Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2545
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorKasparis, Takis-
dc.contributor.authorCharalampidis, Dimitrios-
dc.contributor.authorGeorgiopoulos, Michael N.-
dc.contributor.otherΚασπαρής, Τάκης-
dc.date.accessioned2013-02-18T12:59:03Z-
dc.date.accessioned2013-05-17T05:30:11Z-
dc.date.accessioned2015-12-02T11:35:25Z-
dc.date.available2013-02-18T12:59:03Z-
dc.date.available2013-05-17T05:30:11Z-
dc.date.available2015-12-02T11:35:25Z-
dc.date.issued1998-07-17-
dc.identifier.citationSignal Processing, Sensor Fusion, and Target Recognition VII, 1998, Orlando, Floridaen_US
dc.identifier.isbn978-3-642-41142-7-
dc.identifier.issn0277-786X-
dc.identifier.issn2-s2.0-84894100156-
dc.identifier.issnhttps://api.elsevier.com/content/abstract/scopus_id/84894100156-
dc.descriptionPart of Artificial Intelligence Applications and Innovationsen_US
dc.description.abstractIn this paper texture classification is studied based on the fractal dimension (FD) of filtered versions of the image and the Fuzzy ART Map neural network (FAMNN). FD is used because it has shown good tolerance to some image transformations. We implemented a variation of the testing phase of Fuzzy ARTMAP that exhibited superior performance than the standard Fuzzy ARTMAP and the 1-nearest neighbor (1-NN) in the presence of noise. The performance of the above techniques is tested with respect to segmentation of images that include more than one texture.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 1998 Spieen_US
dc.subjectClassificationen_US
dc.subjectFractalsen_US
dc.subjectComputer visionen_US
dc.subjectNeural networksen_US
dc.titleTexture classification using ART-based neural networks and fractalsen_US
dc.typeConference Papersen_US
dc.affiliationUniversity of Central Florida-
dc.collaborationUniversity of Central Floridaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceSPIE Conference Proceedingsen_US
dc.identifier.doi10.1117/12.327099en_US
dc.identifier.scopus2-s2.0-84894100156-
dc.dept.handle123456789/54-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84894100156-
cut.common.academicyear1997-1998en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

2
checked on 14 Μαρ 2024

Page view(s) 50

449
Last Week
2
Last month
27
checked on 13 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα