Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2499
DC FieldValueLanguage
dc.contributor.authorKasparis, Takis-
dc.contributor.authorCharalampidis, Dimitrios-
dc.contributor.authorAnagnostopoulos, Georgios C.-
dc.contributor.otherΚασπαρής, Τάκης-
dc.date.accessioned2013-02-15T14:01:42Zen
dc.date.accessioned2013-05-17T05:30:08Z-
dc.date.accessioned2015-12-02T11:27:38Z-
dc.date.available2013-02-15T14:01:42Zen
dc.date.available2013-05-17T05:30:08Z-
dc.date.available2015-12-02T11:27:38Z-
dc.date.issued2002-03-11-
dc.identifier.citationProceedings Volume 4739, Applications and Science Computational Intelligence V, AeroSense 2002, Orlando, Floridaen_US
dc.identifier.issn0277-786X-
dc.description.abstractn this paper, we introduce a modification of the Fuzzy ARTMAP (FAM) neural network, namely, the Fuzzy ARTMAP with adaptively weighted distances (FAMawd) neural network. In FAMawd we substitute the regular L1-norm with a weighted L1-norm to measure the distances between categories and input patterns. The distance-related weights are a function of a category's shape and allow for bias in the direction of a category's expansion during learning. Moreover, the modification to the distance measurement is proposed in order to study the capability of FAMawd in achieving more compact knowledge representation than FAM, while simultaneously maintaining good classification performance. For a special parameter setting FAMawd simplifies to the original FAM, thus, making FAMawd a generalization of the FAM architecture. We also present an experimental comparison between FAMawd and FAM on two benchmark classification problems in terms of generalization performance and utilization of categories. Our obtained results illustrate FAMawd's potential to exhibit low memory utilization, while maintaining classification performance comparable to FAM.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2002 IEEEen_US
dc.subjectClassificationen_US
dc.subjectComputer architectureen_US
dc.subjectNeural networksen_US
dc.titleFuzzy ART and fuzzy ARTMAP with adaptively weighted distancesen_US
dc.typeConference Papersen_US
dc.affiliationUniversity of New Orleansen
dc.collaborationUniversity of New Orleansen_US
dc.collaborationUniversity of Central Floridaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceApplications and Science Computational Intelligenceen_US
dc.identifier.doi10.1117/12.458723en_US
dc.dept.handle123456789/54en
cut.common.academicyear2001-2002en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

5
checked on Nov 6, 2023

Page view(s) 20

428
Last Week
0
Last month
0
checked on Feb 2, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.