Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2481
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Kasparis, Takis | - |
dc.contributor.author | Georgiopoulos, Michael N. | - |
dc.contributor.author | Koufakou, Anna | - |
dc.contributor.other | Κασπαρής, Τάκης | - |
dc.date.accessioned | 2013-02-15T14:19:53Z | en |
dc.date.accessioned | 2013-05-17T05:30:10Z | - |
dc.date.accessioned | 2015-12-02T11:26:57Z | - |
dc.date.available | 2013-02-15T14:19:53Z | en |
dc.date.available | 2013-05-17T05:30:10Z | - |
dc.date.available | 2015-12-02T11:26:57Z | - |
dc.date.issued | 2001-03-21 | - |
dc.identifier.citation | Proceedings Volume 4390, Applications and Science of Computational Intelligence IV; (2001), Orlando, Florida | en_US |
dc.identifier.issn | 0277-786X | - |
dc.description.abstract | In this paper we are examining the issue of overtraining in Fuzzy ARTMAP. Over-training in Fuzzy ARTMAP manifests itself in two different ways: (a) it degrades the generalization performance of Fuzzy ARTMAP as training progresses, and (b) it creates unnecessarily large Fuzzy ARTMAP neural network architectures. In this work we are demonstrating that overtraining happens in Fuzzy ARTMAP and we propose an old remedy for its cure: crossvalidation. In our experiments we compare the performance of Fuzzy ARTMAP that is trained (i) until the completion of training, (ii) for one epoch, and (iii) until its performance on a validation set is maximized. The experiments were performed on artificial and real databases. The conclusion derived from these experiments is that cross-validation is a useful procedure in Fuzzy ARTMAP, because it produces smaller Fuzzy ARTMAP architectures with improved generalization performance. The trade-off is that cross-validation introduces additional computational complexity in the training phase of Fuzzy ARTMAP. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.rights | © 2001 SPIE | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Classification | en_US |
dc.subject | Databases | en_US |
dc.title | Cross-validation in fuzzy ARTMAP neural networks for large sample classification problems | en_US |
dc.type | Conference Papers | en_US |
dc.affiliation | University of Central Florida | en |
dc.collaboration | University of Central Florida | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.country | United States | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | SPIE Conference Proceedings | en_US |
dc.identifier.doi | 10.1117/12.421155 | en_US |
dc.dept.handle | 123456789/54 | en |
cut.common.academicyear | 2000-2001 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-3486-538x | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
1
checked on 6 Νοε 2023
Page view(s) 50
427
Last Week
0
0
Last month
28
28
checked on 13 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα