Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/24649
DC FieldValueLanguage
dc.contributor.authorFalco, Simone-
dc.contributor.authorSiegkas, Petros-
dc.contributor.authorBarbieri, Ettore-
dc.contributor.authorPetrinic, Nik-
dc.date.accessioned2022-02-23T09:43:53Z-
dc.date.available2022-02-23T09:43:53Z-
dc.date.issued2014-12-01-
dc.identifier.citationComputational Mechanics, 2014, vol. 54, pp. 1447–1460en_US
dc.identifier.issn01787675-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/24649-
dc.description.abstractIn this paper a new method for the generation and meshing of arbitrarily shaped three-dimensional polycrystalline models is presented. The discretization is based on Voronoi tessellation, which is shown to be statistically representative of the microstructure of polycrystalline materials. An original approach is introduced to define any possible (concave or convex) shape of the final domain, independently from the initial configuration of the aggregate. Firstly the Voronoi cells are cropped along arbitrarily oriented planes to generate a convex domain, and then an arbitrary number of cuts are performed along planar surfaces to generate the final concave domain. Finally the grains are discretised separately and assembled together to create a finite element model. Several examples are presented to show the capability of generated virtual samples to simulate the behaviour of real polycrystalline materials. The macroscopic elastic properties of polycrystals consisting of anisotropic (trigonal) grains and the stress intensity factor at the tip of a sharp notch are evaluated and compared both with analytical calculations and experimental evidences, showing excellent agreement.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputational Mechanicsen_US
dc.rights© Springeren_US
dc.subjectFinite element methoden_US
dc.subjectConcave domainsen_US
dc.subject3D polycrystalline microstructuresen_US
dc.subjectVoronoi tessellationen_US
dc.titleA new method for the generation of arbitrarily shaped 3D random polycrystalline domainsen_US
dc.typeArticleen_US
dc.collaborationUniversity of Oxforden_US
dc.collaborationQueen Mary University of Londonen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/s00466-014-1068-3en_US
dc.identifier.scopus2-s2.0-84919918014-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84919918014-
dc.relation.volume54en_US
cut.common.academicyear2014-2015en_US
item.cerifentitytypePublications-
item.openairetypearticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-9528-2247-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

20
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

177
Last Week
2
Last month
12
checked on May 3, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.