Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/2461
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kalamkarov, Alexander L. | en |
dc.contributor.author | Georgiades, Tasos | - |
dc.contributor.other | Γεωργιάδης, Τάσος | - |
dc.date.accessioned | 2013-03-06T15:25:45Z | en |
dc.date.accessioned | 2013-05-17T05:29:56Z | - |
dc.date.accessioned | 2015-12-02T11:25:39Z | - |
dc.date.available | 2013-03-06T15:25:45Z | en |
dc.date.available | 2013-05-17T05:29:56Z | - |
dc.date.available | 2015-12-02T11:25:39Z | - |
dc.date.issued | 2002 | en |
dc.identifier.citation | Smart Stuctures and Materials: Modeling, Signal Processing and Control, 2002, San Diego, California | en |
dc.identifier.issn | 0277786X | en |
dc.description.abstract | Comprehensive micromechanical models for smart composite materials with a periodic structure are derived and effective elastic, actuation, thermal expansion and hygroscopic expansion coefficients pertaining to these structures are obtained. The actuation coefficients characterize the intrinsic nature of adaptive structures that can be used to induce strains and stresses in a controlled manner. The effective coefficients replace the rapidly oscillating coefficients inherent to the differential equations that govern the behavior of smart anisotropic materials with a regular array of reinforcements and actuators. The mathematical framework employed is that of asymptotic homogenization that permits the determination of the effective coefficients through solution of unit cell problems. The unit cell problems are shown to be independent of the global boundary value problem. It is implicit of course that the physical model based on these coefficients should give predictions differing as little as possible from those of the original problem. Once determined, the effective coefficients can be utilized in studying different types of boundary value problems associated with a given structure. The effectiveness of the derived models and the use of the effective coefficients is illustrated by means of various two- and three-dimensional examples associated with periodic laminates. | en |
dc.format | en | |
dc.language.iso | en | en |
dc.rights | © 2002 SPIE | en |
dc.subject | Boundary value problems | en |
dc.subject | Actuators | en |
dc.subject | Elasticity | en |
dc.subject | Expansion (Heat) | en |
dc.title | Micromechanical modeling of smart composite materials with a periodic structure | en |
dc.type | Conference Papers | en |
dc.affiliation | Dalhousie University | en |
dc.identifier.doi | 10.1117/12.475248 | en |
dc.dept.handle | 123456789/54 | en |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.cerifentitytype | Publications | - |
item.openairetype | conferenceObject | - |
crisitem.author.dept | Department of Mechanical Engineering and Materials Science and Engineering | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-8984-1011 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Page view(s) 50
499
Last Week
1
1
Last month
28
28
checked on Mar 13, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.