Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/24581
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Panousis, Konstantinos P. | - |
dc.contributor.author | Chatzis, Sotirios P. | - |
dc.contributor.author | Theodoridis, Sergios | - |
dc.date.accessioned | 2022-02-22T08:07:51Z | - |
dc.date.available | 2022-02-22T08:07:51Z | - |
dc.date.issued | 2021-01 | - |
dc.identifier.citation | 16th International Symposium on Visual Computing, 2021,4–6 October | en_US |
dc.identifier.isbn | 9783030904357 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/24581 | - |
dc.description.abstract | Hidden Markov Models (HMMs) comprise a powerful generative approach for modeling sequential data and time-series in general. However, the commonly employed assumption of the dependence of the current time frame to a single or multiple immediately preceding frames is unrealistic; more complicated dynamics potentially exist in real world scenarios. This paper revisits conventional sequential modeling approaches, aiming to address the problem of capturing time-varying temporal dependency patterns. To this end, we propose a different formulation of HMMs, whereby the dependence on past frames is dynamically inferred from the data. Specifically, we introduce a hierarchical extension by postulating an additional latent variable layer; therein, the (time-varying) temporal dependence patterns are treated as latent variables over which inference is performed. We leverage solid arguments from the Variational Bayes framework and derive a tractable inference algorithm based on the forward-backward algorithm. As we experimentally show, our approach can model highly complex sequential data and can effectively handle data with missing values. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.rights | © Springer | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Approximate inference | en_US |
dc.subject | Hidden Markov Models | en_US |
dc.subject | Temporal dependence | en_US |
dc.title | Variational Conditional Dependence Hidden Markov Models for Skeleton-Based Action Recognition | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | National and Kapodistrian University of Athens | en_US |
dc.collaboration | Aalborg University | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.journals | Subscription | en_US |
dc.country | Cyprus | en_US |
dc.country | Greece | en_US |
dc.country | Denmark | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | International Symposium on Visual Computing (ISVC) | en_US |
dc.identifier.doi | 10.1007/978-3-030-90436-4_6 | en_US |
dc.identifier.scopus | 2-s2.0-85121935424 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85121935424 | - |
cut.common.academicyear | 2020-2021 | en_US |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4956-4013 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
1
checked on 14 Μαρ 2024
Page view(s) 50
262
Last Week
0
0
Last month
4
4
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons