Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/24581
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorPanousis, Konstantinos P.-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorTheodoridis, Sergios-
dc.date.accessioned2022-02-22T08:07:51Z-
dc.date.available2022-02-22T08:07:51Z-
dc.date.issued2021-01-
dc.identifier.citation16th International Symposium on Visual Computing, 2021,4–6 Octoberen_US
dc.identifier.isbn9783030904357-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/24581-
dc.description.abstractHidden Markov Models (HMMs) comprise a powerful generative approach for modeling sequential data and time-series in general. However, the commonly employed assumption of the dependence of the current time frame to a single or multiple immediately preceding frames is unrealistic; more complicated dynamics potentially exist in real world scenarios. This paper revisits conventional sequential modeling approaches, aiming to address the problem of capturing time-varying temporal dependency patterns. To this end, we propose a different formulation of HMMs, whereby the dependence on past frames is dynamically inferred from the data. Specifically, we introduce a hierarchical extension by postulating an additional latent variable layer; therein, the (time-varying) temporal dependence patterns are treated as latent variables over which inference is performed. We leverage solid arguments from the Variational Bayes framework and derive a tractable inference algorithm based on the forward-backward algorithm. As we experimentally show, our approach can model highly complex sequential data and can effectively handle data with missing values.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Springeren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectApproximate inferenceen_US
dc.subjectHidden Markov Modelsen_US
dc.subjectTemporal dependenceen_US
dc.titleVariational Conditional Dependence Hidden Markov Models for Skeleton-Based Action Recognitionen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationNational and Kapodistrian University of Athensen_US
dc.collaborationAalborg Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryDenmarken_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Symposium on Visual Computing (ISVC)en_US
dc.identifier.doi10.1007/978-3-030-90436-4_6en_US
dc.identifier.scopus2-s2.0-85121935424-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85121935424-
cut.common.academicyear2020-2021en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

1
checked on 14 Μαρ 2024

Page view(s) 50

262
Last Week
0
Last month
4
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons