Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/24521
DC FieldValueLanguage
dc.contributor.authorGeorghiou, Paris E.-
dc.contributor.authorRahman, Shofiur-
dc.contributor.authorAssiri, Yousif-
dc.contributor.authorValluru, Gopi Kishore-
dc.contributor.authorMenelaou, Melita-
dc.contributor.authorAlodhayb, Abdullah N.-
dc.contributor.authorBraim, Mona-
dc.contributor.authorBeaulieu, L. Y.-
dc.date.accessioned2022-02-21T10:55:19Z-
dc.date.available2022-02-21T10:55:19Z-
dc.date.issued2022-01-01-
dc.identifier.citationCanadian Journal of Chemistry, 2022, vol. 100, no. 2en_US
dc.identifier.issn00084042-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/24521-
dc.description.abstractThe development of a microcantilever (MCL) sensing device capable of simultaneously detecting several metal ionic species in aqueous media with low limits of detection requires a variety of sensing layers that are ion specific. Calix[4] arenes are robust molecules that can be easily modified and have been extensively studied for their ion binding properties. They are also capable of forming self-assembled monolayers (SAMs) on the gold layers of MCLs and are capable of detecting various metal ions with different anionic counterions in aqueous solutions. In this paper, we report on the effect of the alkoxy group in the narrow rim [O-(alkoxycarbonyl)methoxy] substituents of bimodal calix[4]arenes, which have been used as metal ion MCL sensing layers, using classical solution state experimental studies. A DFT computational study to compare the experimental results with several metal ions is also reported herein.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofCanadian Journal of Chemistryen_US
dc.rights© Canadian Scienceen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDevelopment of calix[4]arenes modified at their narrow-and wide-rims as potential metal ions sensor layers for microcantilever sensors: further studiesen_US
dc.typeArticleen_US
dc.collaborationMemorial University of Newfoundlanden_US
dc.collaborationKing Saud Universityen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryCanadaen_US
dc.countrySaudi Arabiaen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1139/cjc-2021-0119en_US
dc.identifier.scopus2-s2.0-85124038630-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85124038630-
dc.relation.issue2en_US
dc.relation.volume100en_US
cut.common.academicyear2021-2022en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7845-8802-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 14, 2024

Page view(s)

221
Last Week
1
Last month
6
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons