Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/24319
Title: | Optimization of rain gauge networks for arid regions based on remote sensing data | Authors: | Morsy, Mona Taghizadeh-Mehrjardi, Ruhollah Michaelides, Silas Scholten, Thomas Dietrich, Peter Schmidt, Karsten |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Keywords: | Rain gauge;Arid region;GPM;IMERG;Empirical Cumulative Distribution Function;Sinai | Issue Date: | 1-Nov-2021 | Source: | Remote Sensing, 2021, vol. 13, no. 21, articl. no. 4243 | Volume: | 13 | Issue: | 21 | Journal: | Remote Sensing | Abstract: | Water depletion is a growing problem in the world’s arid and semi-arid areas, where groundwater is the primary source of fresh water. Accurate climatic data must be obtained to protect municipal water budgets. Unfortunately, the majority of these arid regions have a sparsely distributed number of rain gauges, which reduces the reliability of the spatio-temporal fields generated. The current research proposes a series of measures to address the problem of data scarcity, in particular regarding in-situ measurements of precipitation. Once the issue of improving the network of ground precipitation measurements is settled, this may pave the way for much-needed hydrological research on topics such as the spatiotemporal distribution of precipitation, flash flood prevention, and soil erosion reduction. In this study, a k-means cluster analysis is used to determine new locations for the rain gauge network at the Eastern side of the Gulf of Suez in Sinai. The clustering procedure adopted is based on integrating a digital elevation model obtained from The Shuttle Radar Topography Mission (SRTM 90 × 90 m) and Integrated Multi-Satellite Retrievals for GPM (IMERG) for four rainy events. This procedure enabled the determination of the potential centroids for three different cluster sizes (3, 6, and 9). Subsequently, each number was tested using the Empirical Cumulative Distribution Function (ECDF) in an effort to determine the optimal one. However, all the tested centroids exhibited gaps in covering the whole range of elevations and precipitation of the test site. The nine centroids with the five existing rain gauges were used as a basis to calculate the error kriging. This procedure enabled decreasing the error by increasing the number of the proposed gauges. The resulting points were tested again by ECDF and this confirmed the optimum of thirty-one suggested additional gauges in covering the whole range of elevations and precipitation records at the study site. | URI: | https://hdl.handle.net/20.500.14279/24319 | ISSN: | 20724292 | DOI: | 10.3390/rs13214243 | Rights: | © The Author(s) | Type: | Article | Affiliation : | Helmholtz Center for Environmental Research Suez Canal University University of Tübingen Cyprus University of Technology ERATOSTHENES Centre of Excellence |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
remotesensing-13-04243 (1).pdf | 4.4 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
7
checked on Mar 14, 2024
WEB OF SCIENCETM
Citations
5
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
233
Last Week
0
0
Last month
4
4
checked on Nov 6, 2024
Download(s)
165
checked on Nov 6, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License