Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/24232
Title: | Statistical Time-Series Analysis of Interferometric Coherence from Sentinel-1 Sensors for Landslide Detection and Early Warning | Authors: | Tzouvaras, Marios | Editors: | Levy, Jason K. | Major Field of Science: | Engineering and Technology | Field Category: | Earth and Related Environmental Sciences | Keywords: | Copernicus; SAR; critical infrastructure resilience; early warning; landslides | Issue Date: | 13-Oct-2021 | Source: | Sensors, 2021, vol. 21, iss. 20 | Volume: | 21 | Issue: | 20 | Project: | ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment | Journal: | Sensors | Abstract: | Landslides are one of the most destructive natural hazards worldwide, affecting greatly built-up areas and critical infrastructure, causing loss of human lives, injuries, destruction of properties, and disturbance in everyday commute. Traditionally, landslides are monitored through time consuming and costly in situ geotechnical investigations and a wide range of conventional means, such as inclinometers and boreholes. Earth Observation and the exploitation of the freely available Copernicus datasets, and especially Sentinel-1 Synthetic Aperture Radar (SAR) images, can assist in the systematic monitoring of landslides, irrespective of weather conditions and time of day, overcoming the restrictions arising from in situ measurements. In the present study, a comprehensive statistical analysis of coherence obtained through processing of a time-series of Sentinel-1 SAR imagery was carried out to investigate and detect early indications of a landslide that took place in Cyprus on 15 February 2019. The application of the proposed methodology led to the detection of a sudden coherence loss prior to the landslide occurrence that can be used as input to Early Warning Systems, giving valuable on-time information about an upcoming landslide to emergency response authorities and the public, saving numerous lives. The statistical significance of the results was tested using Analysis of Variance (ANOVA) tests and two-tailed t-tests. | URI: | https://hdl.handle.net/20.500.14279/24232 | ISSN: | 14248220 | DOI: | 10.3390/s21206799 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International | Type: | Article | Affiliation : | Cyprus University of Technology ERATOSTHENES Centre of Excellence |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
sensors-21-06799-v2 (1).pdf | Open Access | 5.5 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
20
11
checked on Nov 18, 2024
WEB OF SCIENCETM
Citations
5
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 20
250
Last Week
1
1
Last month
5
5
checked on Nov 21, 2024
Download(s) 20
160
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License