Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23881
DC FieldValueLanguage
dc.contributor.authorSymeou, Elli-
dc.contributor.authorKaryou, M.-
dc.contributor.authorDelimitis, Andreas-
dc.contributor.authorConstantinou, Marios-
dc.contributor.authorConstantinides, Georgios-
dc.contributor.authorNicolaou, Ch.-
dc.contributor.authorGiapintzakis, Ioannis-
dc.contributor.authorKyratsi, Th-
dc.date.accessioned2022-02-04T06:54:35Z-
dc.date.available2022-02-04T06:54:35Z-
dc.date.issued2022-02-
dc.identifier.citationJournal of Physics and Chemistry of Solids, 2022, vol. 161, articl. no. 110472en_US
dc.identifier.issn00223697-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23881-
dc.description.abstractMg2Si-type compounds are highly promising materials for use in thermoelectric devices for waste heat energy harvesting. These compounds have great potential because they exhibit high thermoelectric performance, but the scalability of their synthesis is a major issue for applications. In this study, Bi-doped Mg2Si0.55-xSn0.4Gex (x = 0 and 0.05) materials were prepared by mechanical alloying combined with hot press sintering in order to increase the mass capabilities of their synthetic route compared with the typical solid state reaction. The optimum thermoelectric properties were achieved for the best Mg2Si0.57Sn0.4Bi0.03 and Mg2Si0.53Sn0.4Ge0.05Bi0.02 compositions by ball milling for 32 h and the maximum figure of merit (ZT) values were 1.07 and 1.2, respectively.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Physics and Chemistry of Solidsen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMagnesium silicideen_US
dc.subjectMechanical propertiesen_US
dc.subjectSolid state reaction synthesisen_US
dc.subjectThermoelectric propertiesen_US
dc.subjectMechanical alloyingen_US
dc.subjectBall millingen_US
dc.titlePreparation of highly efficient thermoelectric Bi-doped Mg2Si0.55-xSn0.4Gex (x = 0 and 0.05) materials with a scalable mechanical alloying methoden_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationUniversity of Stavangeren_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryNorwayen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.jpcs.2021.110472en_US
dc.identifier.scopus2-s2.0-85119035229-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85119035229-
dc.relation.volume161en_US
cut.common.academicyear2021-2022en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn0022-3697-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1979-5176-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s)

228
Last Week
2
Last month
10
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons