Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/2378
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kasparis, Takis | - |
dc.contributor.author | Memon, Qurban A. | - |
dc.contributor.other | Κασπαρής, Τάκης | - |
dc.date.accessioned | 2013-02-18T13:01:24Z | en |
dc.date.accessioned | 2013-05-17T05:29:40Z | - |
dc.date.accessioned | 2015-12-02T11:21:37Z | - |
dc.date.available | 2013-02-18T13:01:24Z | en |
dc.date.available | 2013-05-17T05:29:40Z | - |
dc.date.available | 2015-12-02T11:21:37Z | - |
dc.date.issued | 2002-08-06 | - |
dc.identifier.citation | Proceedings of the Southcon Conference, 1996, Orlando, Florida | en_US |
dc.identifier.isbn | 0-7803-3268-7 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/2378 | - |
dc.description.abstract | Signal representation and data coding for multidimensional signals have received considerable attention due to their importance to several modern technologies. Many useful contributions have been reported that employ wavelets and transform methods. Transform techniques have been generally applied for waveform coding, where constrained representation has been widely used. There is tradeoff between transform efficiency and ease of its implementation and the application depends upon the criterion applicable in any particular case. There exists an approximate Fourier expansion (AFE) with theoretically uncorrelated coefficients. Approximate trigonometric expansions have the capability of fast implementation as well as relatively better decorrelation efficiency than the discrete cosine transform. Some properties of these expansions along with their application to images has already been explored. We apply approximate trigonometric expansions to 1-D signals. Signal decomposition of the signal has been widely used with the discrete cosine transform for signal compression. Here, 1-D signals are decomposed using approximate Fourier expansion (AFE) and later these decomposed signals are represented using an approximate cosine expansion (ACE) for purposes of coding. Computer simulation results are presented | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.rights | © 2002 IEEE | en_US |
dc.subject | Computer simulation | en_US |
dc.subject | Application software | en_US |
dc.subject | Wavelets (Mathematics) | en_US |
dc.subject | Fourier series | en_US |
dc.subject | Approximation theory | en_US |
dc.title | Application of approximate trigonometric expansions to multiresolution signal representation | en_US |
dc.type | Conference Papers | en_US |
dc.affiliation | University of Central Florida | en |
dc.collaboration | University of Central Florida | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.country | United States | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | Southcon Conference | en_US |
dc.identifier.doi | 10.1109/SOUTHC.1996.535085 | en_US |
dc.dept.handle | 123456789/54 | en |
cut.common.academicyear | 2001-2002 | en_US |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-3486-538x | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Page view(s) 50
489
Last Week
1
1
Last month
6
6
checked on Jan 30, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.