Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/23617
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorGeorgiou, Andreas-
dc.contributor.authorLoizou, Christos P.-
dc.contributor.authorNicolaou, Andria-
dc.contributor.authorPantzaris, Marios C.-
dc.contributor.authorPattichis, Constantinos S.-
dc.date.accessioned2021-11-11T13:16:39Z-
dc.date.available2021-11-11T13:16:39Z-
dc.date.issued2021-09-
dc.identifier.citation19th International Conference on Computer Analysis of Images and Patterns, 2021, 28-30 September, Virtual Eventen_US
dc.identifier.isbn978-3-030-89128-2-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23617-
dc.description.abstractThis work proposes and evaluates a semi-automated integrated segmentation system for multiple sclerosis (MS) lesions in fluid-attenuated inversion recovery (FLAIR) brain magnetic resonance images (MRI). The proposed system uses an adaptive two-dimensional (2D) full convolutional neural network (CNN) and is applied to each MRI brain slice separately. The system is based on a U-Net architecture and allows manual error corrections by the user. This task produces continuing additional improvements to the accuracy of the segmentation system, which can be adapted and reconfigured interactively based on the data entered by the user of the system. The system was evaluated based on the ISBI dataset, on 20 MRI brain images acquired from 5 MS subjects who repeated their examinations in four consecutive time points (TP1-TP4). Manual lesion delineations were provided by two different experts. A Dice Similarity Coefficient (DSC) of 0.76 was achieved using the proposed system which is the highest achieved also by another system. A higher DSC of 0.82 was achieved when the proposed system was evaluated on TP4 images only. A larger dataset will be analyzed in the future, and new measurement metrics will be suggested.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Springeren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMRIen_US
dc.subjectMultiple sclerosisen_US
dc.subjectSemi-automated lesion segmentationen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectU-Neten_US
dc.titleAn Adaptive Semi-automated Integrated System for Multiple Sclerosis Lesion Segmentation in Longitudinal MRI Scans Based on a Convolutional Neural Networken_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationCyprus Institute of Neurology and Geneticsen_US
dc.subject.categoryMedical Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Computer Analysis of Images and Patternsen_US
dc.identifier.doi10.1007/978-3-030-89128-2_25en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage256en_US
dc.identifier.epage265en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1247-8573-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

3
checked on 6 Νοε 2023

Page view(s) 50

369
Last Week
1
Last month
34
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons