Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2357
DC FieldValueLanguage
dc.contributor.authorBolis, Dimitrisen
dc.contributor.authorTefas, Anastasiosen
dc.contributor.authorPitas, Ioannis K.en
dc.contributor.authorMaronidis, Anastasios-
dc.contributor.otherΜπόλης, Δημήτρηςen
dc.contributor.otherΤέφας, Αναστάσιοςen
dc.contributor.otherΠίτας, Ιωάννης Κ.en
dc.contributor.otherΜαρωνίδης, Αναστάσιος-
dc.date.accessioned2013-02-19T09:42:19Zen
dc.date.accessioned2013-05-16T13:33:10Z-
dc.date.accessioned2015-12-02T11:21:09Z-
dc.date.available2013-02-19T09:42:19Zen
dc.date.available2013-05-16T13:33:10Z-
dc.date.available2015-12-02T11:21:09Z-
dc.date.issued2010en
dc.identifier.citation20th International Conference on Artificial Neural Networks, 2010, Thessaloniki, Greeceen
dc.description.abstractIn this paper, the robustness of appearance-based, subspace learning techniques for facial expression recognition in geometrical transformations is explored. A plethora of facial expression recognition algorithms is presented and tested using three well-known facial expression databases. Although, it is common-knowledge that appearance based methods are sensitive to image registration errors, there is no systematic experiment reported in the literature and the problem is considered, a priori, solved. However, when it comes to automatic real-world applications, inaccuracies are expected, and a systematic preprocessing is needed. After a series of experiments we observed a strong correlation between the performance and the bounding box position. The mere investigation of the bounding box’s optimal characteristics is insufficient, due to the inherent constraints a real-world application imposes, and an alternative approach is demanded. Based on systematic experiments, the database enrichment with translated, scaled and rotated images is proposed for confronting the low robustness of subspace techniques for facial expression recognition.en
dc.formatpdfen
dc.language.isoenen
dc.rights© 2010 Springer-Verlag Berlin Heidelberg.en
dc.subjectFacial expressionen
dc.subjectNeural networksen
dc.subjectExperimentsen
dc.subjectHuman face recognition (Computer science)en
dc.titleImproving the robustness of subspace learning techniques for facial expression recognitionen
dc.typeConference Papersen
dc.affiliationAristotle University of Thessalonikien
dc.identifier.doi10.1007/978-3-642-15819-3_63en
dc.dept.handle123456789/54en
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

4
checked on Nov 6, 2023

Page view(s) 20

495
Last Week
0
Last month
2
checked on Feb 2, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.