Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2340
DC FieldValueLanguage
dc.contributor.authorKasparis, Takis-
dc.contributor.authorCharalampidis, Dimitrios-
dc.contributor.otherΚασπαρής, Τάκης-
dc.date.accessioned2013-02-18T09:24:48Zen
dc.date.accessioned2013-05-17T05:29:36Z-
dc.date.accessioned2015-12-02T11:20:47Z-
dc.date.available2013-02-18T09:24:48Zen
dc.date.available2013-05-17T05:29:36Z-
dc.date.available2015-12-02T11:20:47Z-
dc.date.issued2001-03-26-
dc.identifier.citationProceedings vol. 4391, Wavelet Applications VIII; 2001, Orlando, Floridaen_US
dc.identifier.issn0277-786X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2340-
dc.description.abstractIn this paper we introduce a feature set for texture segmentation, based on an extension of fractal dimension features. Fractal dimension extracts roughness information from images considering all available scales at once. In this work a single scale is considered at a time so that textures that do not possess scale invariance are sufficiently characterized. Single scale features are combined with multiple scale features for a more complete textural representation. Wavelets are employed for the computation of single and multiple scale roughness features due to their ability to extract information at different resolutions. Features are extracted at multiple directions using directional wavelets, and the feature vector is finally transformed to a rotational invariant feature vector that retains the texture directional information. An iterative K-means scheme is used for segmentation. The use of the roughness feature set results in high quality segmentation performance. The feature set retains the important properties of fractal dimension based features, namely insensitivity to absolute illumination and contrast.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© SPIEen_US
dc.subjectFractalsen_US
dc.subjectinvarianten_US
dc.subjectSurface roughnessen_US
dc.titleRotational invariant texture segmentation using directional wavelet-based fractal dimensionsen_US
dc.typeConference Papersen_US
dc.affiliationUniversity of Central Floridaen
dc.collaborationUniversity of Central Floridaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceSPIE Conference Proceedingsen_US
dc.identifier.doi10.1117/12.421191en_US
dc.dept.handle123456789/54en
cut.common.academicyear2000-2001en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

4
checked on Nov 8, 2023

Page view(s) 50

376
Last Week
3
Last month
3
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.