Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/23149
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Partaourides, Harris | - |
dc.contributor.author | Voskou, Andreas | - |
dc.contributor.author | Kosmopoulos, Dimitrios I. | - |
dc.contributor.author | Chatzis, Sotirios P. | - |
dc.contributor.author | N. Metaxas, Dimitris | - |
dc.date.accessioned | 2021-09-30T08:31:18Z | - |
dc.date.available | 2021-09-30T08:31:18Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | 15th International Symposium on Visual Computing, 2020, 5-7 October, San Diego | en_US |
dc.identifier.isbn | 9783030645588 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/23149 | - |
dc.description.abstract | Memory-efficient continuous Sign Language Translation is a significant challenge for the development of assisted technologies with real-time applicability for the deaf. In this work, we introduce a paradigm of designing recurrent deep networks whereby the output of the recurrent layer is derived from appropriate arguments from nonparametric statistics. A novel variational Bayesian sequence-to-sequence network architecture is proposed that consists of a) a full Gaussian posterior distribution for data-driven memory compression and b) a nonparametric Indian Buffet Process prior for regularization applied on the Gated Recurrent Unit non-gate weights. We dub our approach Stick-Breaking Recurrent network and show that it can achieve a substantial weight compression without diminishing modeling performance. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation | DeepSignNet: Video processing for Sign Language Recognition using Deep Bayesian Recurrent Neural Networks | en_US |
dc.rights | © Springer | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Deep learning | en_US |
dc.subject | Gloss to Text | en_US |
dc.subject | Sign Language Translation | en_US |
dc.subject | Weight compression | en_US |
dc.title | Variational Bayesian Sequence-to-Sequence Networks for Memory-Efficient Sign Language Translation | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | University of Patras | en_US |
dc.collaboration | Rutgers University | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.country | Cyprus | en_US |
dc.country | Greece | en_US |
dc.country | United States | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | International Symposium on Visual Computing (ISVC) | en_US |
dc.identifier.doi | 10.1007/978-3-030-64559-5_19 | en_US |
dc.identifier.scopus | 2-s2.0-85098219734 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85098219734 | - |
cut.common.academicyear | 2019-2020 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-8555-260X | - |
crisitem.author.orcid | 0000-0002-4956-4013 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
3
checked on Mar 14, 2024
Page view(s) 50
271
Last Week
1
1
Last month
6
6
checked on Nov 23, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License