Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23149
DC FieldValueLanguage
dc.contributor.authorPartaourides, Harris-
dc.contributor.authorVoskou, Andreas-
dc.contributor.authorKosmopoulos, Dimitrios I.-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorN. Metaxas, Dimitris-
dc.date.accessioned2021-09-30T08:31:18Z-
dc.date.available2021-09-30T08:31:18Z-
dc.date.issued2020-
dc.identifier.citation15th International Symposium on Visual Computing, 2020, 5-7 October, San Diegoen_US
dc.identifier.isbn9783030645588-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/23149-
dc.description.abstractMemory-efficient continuous Sign Language Translation is a significant challenge for the development of assisted technologies with real-time applicability for the deaf. In this work, we introduce a paradigm of designing recurrent deep networks whereby the output of the recurrent layer is derived from appropriate arguments from nonparametric statistics. A novel variational Bayesian sequence-to-sequence network architecture is proposed that consists of a) a full Gaussian posterior distribution for data-driven memory compression and b) a nonparametric Indian Buffet Process prior for regularization applied on the Gated Recurrent Unit non-gate weights. We dub our approach Stick-Breaking Recurrent network and show that it can achieve a substantial weight compression without diminishing modeling performance.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relationDeepSignNet: Video processing for Sign Language Recognition using Deep Bayesian Recurrent Neural Networksen_US
dc.rights© Springeren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDeep learningen_US
dc.subjectGloss to Texten_US
dc.subjectSign Language Translationen_US
dc.subjectWeight compressionen_US
dc.titleVariational Bayesian Sequence-to-Sequence Networks for Memory-Efficient Sign Language Translationen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.collaborationRutgers Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryUnited Statesen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Symposium on Visual Computing (ISVC)en_US
dc.identifier.doi10.1007/978-3-030-64559-5_19en_US
dc.identifier.scopus2-s2.0-85098219734-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85098219734-
cut.common.academicyear2019-2020en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8555-260X-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

3
checked on Mar 14, 2024

Page view(s) 50

271
Last Week
1
Last month
6
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons