Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22969
DC FieldValueLanguage
dc.contributor.authorCaruso, Fabio-
dc.contributor.authorAmsalem, Patrick-
dc.contributor.authorMa, Jie-
dc.contributor.authorAljarb, Areej-
dc.contributor.authorSchultz, Thorsten-
dc.contributor.authorZacharias, Marios-
dc.contributor.authorTung, Vincent-
dc.contributor.authorKoch, Norbert-
dc.contributor.authorDraxl, Claudia-
dc.date.accessioned2021-09-03T09:18:02Z-
dc.date.available2021-09-03T09:18:02Z-
dc.date.issued2021-05-27-
dc.identifier.citationPhysical Review B, 2021, vol. 103, no. 20, articl. no. 205152en_US
dc.identifier.issn24699969-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22969-
dc.description.abstractWe report experimental and theoretical evidence of strong electron-plasmon interaction in n-doped single-layer MoS2. Angle-resolved photoemission spectroscopy (ARPES) measurements reveal the emergence of distinctive signatures of polaronic coupling in the electron spectral function. Calculations based on many-body perturbation theory illustrate that electronic coupling to two-dimensional (2D) carrier plasmons provides an exhaustive explanation of the experimental spectral features and their energies. These results constitute compelling evidence of the formation of plasmon-induced polaronic quasiparticles, suggesting that highly-doped transition-metal dichalcogenides may provide a new platform to explore strong-coupling phenomena between electrons and plasmons in 2D.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPhysical Review Ben_US
dc.rights© American Physical Societyen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLayered semiconductorsen_US
dc.subjectMolybdenum compoundsen_US
dc.subjectMonolayersen_US
dc.subjectPerturbation techniquesen_US
dc.subjectPhotoelectron spectroscopyen_US
dc.subjectPlasmonicsen_US
dc.subjectPolaronsen_US
dc.subjectTransition metalsen_US
dc.titleTwo-dimensional plasmonic polarons in n-doped monolayer MoS2en_US
dc.typeArticleen_US
dc.collaborationChristian-Albrecht University of Kielen_US
dc.collaborationHumboldt-Universitat zu Berlinen_US
dc.collaborationKing Abdullah University of Science and Technologyen_US
dc.collaborationHelmholtz‐Zentrum Berlin für Materialien und Energie GmbHen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGermanyen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1103/PhysRevB.103.205152en_US
dc.identifier.scopus2-s2.0-85107298769-
dc.identifier.urlhttp://arxiv.org/abs/2104.14242v1-
dc.relation.issue20en_US
dc.relation.volume103en_US
cut.common.academicyear2020-2021en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2469-9969-
crisitem.journal.publisherAmerican Physical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7052-5684-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

13
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

11
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

253
Last Week
4
Last month
11
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons