Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22938
DC FieldValueLanguage
dc.contributor.authorKörner, Oliver-
dc.contributor.authorFanourakis, Dimitrios-
dc.contributor.authorChung-Rung Hwang, Michael-
dc.contributor.authorHyldgaard, Benita-
dc.contributor.authorTsaniklidis, Georgios-
dc.contributor.authorNikoloudakis, Nikolaos-
dc.contributor.authorLarsen, Dorthe Horn-
dc.contributor.authorOttosen, Carl Otto-
dc.contributor.authorRosenqvist, Eva-
dc.date.accessioned2021-08-31T08:18:08Z-
dc.date.available2021-08-31T08:18:08Z-
dc.date.issued2021-08-
dc.identifier.citationBiosystems Engineering, 2021, vol. 208, pp. 131-151en_US
dc.identifier.issn15375110-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22938-
dc.description.abstractThe effect of considering cultivar differences in stomatal conductance (gs) on relative air humidity (RH)-related energy demand was addressed. We conducted six experiments in order to study the variation in evapotranspiration (ETc) of six pot rose cultivars, investigate the underlying processes and parameterise a gs-based ETc model. Several levels of crop ETc were realised by adjusting the growth environment. The commonly applied Ball–Woodrow–Berry gs-sub-model (BWB-model) in ETc models was validated under greenhouse conditions, and showed a close agreement between simulated and measured ETc. The validated model was incorporated into a greenhouse simulator. A scenario simulation study showed that selecting low-gs cultivars reduces energy demand (≤5.75%), depending on the RH set point. However, the BWB-model showed poor prediction quality at RH lower than 60% and a good fit at higher RH. Therefore, an attempt was made to improve model prediction: the in situ-obtained data were employed to adapt and extend either the BWB-model, or the Liu-extension with substrate water potential (Ψ; BWB-Liu-model). Both models were extended with stomatal density (Ds) or pore area. Although the modified BWB-Liu-model (considering Ds) allowed higher accuracy (R2 = 0.59), as compared to the basic version (R2 = 0.31), the typical lack of Ψ prediction in greenhouse models may be problematic for implementation into real-time climate control. The current study lays the basis for the development of cultivar specific cultivation strategies as well as improving the gs sub-model for dynamic climate conditions under low RH using model-based control systems.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofBiosystems Engineeringen_US
dc.rights© The Author(s). This is an open access article under the CC BY license.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectClimate controlen_US
dc.subjectRelative air humidityen_US
dc.subjectSimulation modelen_US
dc.subjectStomatal conductanceen_US
dc.subjectStomatal densityen_US
dc.subjectTranspirationen_US
dc.titleIncorporating cultivar-specific stomatal traits into stomatal conductance models improves the estimation of evapotranspiration enhancing greenhouse climate managementen_US
dc.typeArticleen_US
dc.collaborationLeibniz-Institute of Vegetable and Ornamental Cropsen_US
dc.collaborationHellenic Mediterranean Universityen_US
dc.collaborationUniversity of Copenhagenen_US
dc.collaborationKlasmann-Deilmann Asia Pacific Pte. Ltden_US
dc.collaborationAarhus Universityen_US
dc.collaborationHellenic Agricultural Organization “Demeter”en_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationWageningen Universityen_US
dc.subject.categoryEarth and Related Environmental Sciencesen_US
dc.journalsOpen Accessen_US
dc.countryGermanyen_US
dc.countryGreeceen_US
dc.countryDenmarken_US
dc.countrySingaporeen_US
dc.countryNetherlandsen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.biosystemseng.2021.05.010en_US
dc.identifier.scopus2-s2.0-85108120949-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85108120949-
dc.relation.volume208en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage131en_US
dc.identifier.epage151en_US
item.cerifentitytypePublications-
item.openairetypearticle-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.journal.journalissn1537-5110-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0002-3935-8443-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
1-s2.0-S1537511021001100-main.pdfFulltext3.64 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

7
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

233
Last Week
2
Last month
29
checked on Apr 28, 2024

Download(s)

142
checked on Apr 28, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons