Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22916
DC FieldValueLanguage
dc.contributor.authorAgathokleous, Evgenios-
dc.contributor.authorZhou, Boya-
dc.contributor.authorXu, Jianing-
dc.contributor.authorIoannou, Andreas-
dc.contributor.authorFeng, Zhaozhong-
dc.contributor.authorSaitanis, Costas J.-
dc.contributor.authorFrei, Michael-
dc.contributor.authorCalabrese, Edward J.-
dc.contributor.authorFotopoulos, Vasileios-
dc.date.accessioned2021-08-30T06:48:24Z-
dc.date.available2021-08-30T06:48:24Z-
dc.date.issued2021-09-
dc.identifier.citationEnvironmental Research, 2021, vol. 200, articl. no. 111746en_US
dc.identifier.issn00139351-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22916-
dc.description.abstractMelatonin is produced by plants, algae, and animals. Worldwide studies show diverse positive effects of exogenous melatonin on plants, edible plant products, and algae, but the potential of melatonin to enhance food and feed systems through these positive effects remains largely unexplored. Through a meta-analysis of about 25,000 observations, we show for the first time that exogenous application of melatonin significantly increases crop productivity and yields, and enhances the nutritional and nutraceutical value of edible plant products and algae by regulating diverse biological functions. We demonstrate that melatonin can improve plants, edible plant products, and algae under various current climate change scenarios, environmental pollution factors, and other stresses by about 7% to nearly 30%, on average, depending on the stressor. We also analyze various technical/methodological factors influencing the desired outcomes and identify conditions that offer optimal enhancement. We show that the positive effect of melatonin on plants and edible plant products varies among species, genera, and families, and strongly depends on the concentration of melatonin and treatment duration. The effect of melatonin is slightly lower on the monocot clade Commelinids than on the eudicot clades Asterids and Rosids. We also show that its stimulatory effect on plants depends on cultivation system, with a larger effect obtained in hydroponic systems. However, it does not depend on application stage (seed or vegetative), application route (foliage, roots, or seed), and whether the cultivation system is ex vivo or in vivo. This is the first meta-analysis examining the effects of melatonin on plants, edible plant products, and algae, and offers a scientific and technical roadmap facilitating sustainable food and feed production through the application of exogenous melatonin.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEnvironmental Researchen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectClimate changeen_US
dc.subjectEdible plantsen_US
dc.subjectEnvironmental pollutionen_US
dc.subjectFood securityen_US
dc.subjectFruiten_US
dc.subjectHungeren_US
dc.subjectMelatoninen_US
dc.subjectNutritive valueen_US
dc.subjectPhysiological stressen_US
dc.subjectSustainable agricultureen_US
dc.titleExogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysisen_US
dc.typeArticleen_US
dc.collaborationNanjing University of Information Science & Technologyen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationAgricultural University of Athensen_US
dc.collaborationJustus Liebig University Gießenen_US
dc.collaborationUniversity of Massachusetts, Amhersten_US
dc.subject.categoryAgriculture Forestry and Fisheriesen_US
dc.journalsSubscriptionen_US
dc.countryChinaen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countryGermanyen_US
dc.countryUnited Statesen_US
dc.subject.fieldAgricultural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.envres.2021.111746en_US
dc.identifier.pmid34302829-
dc.identifier.scopus2-s2.0-85111264350-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85111264350-
dc.relation.volume200en_US
cut.common.academicyear2021-2022en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.deptDepartment of Agricultural Sciences, Biotechnology and Food Science-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0003-1205-2070-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.journal.journalissn0013-9351-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

22
checked on Feb 2, 2024

WEB OF SCIENCETM
Citations

19
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

267
Last Week
4
Last month
10
checked on Aug 28, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons