Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22784
DC FieldValueLanguage
dc.contributor.authorAgrafiotis, Panagiotis-
dc.contributor.authorKarantzalos, Konstantinos-
dc.contributor.authorGeorgopoulos, Andreas-
dc.contributor.authorSkarlatos, Dimitrios-
dc.date.accessioned2021-06-24T08:47:59Z-
dc.date.available2021-06-24T08:47:59Z-
dc.date.issued2021-04-
dc.identifier.citationPFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2021, vol. 89, no. 2, pp. 91 - 109en_US
dc.identifier.issn25122819-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22784-
dc.description.abstractThe increasing need for accurate bathymetric mapping is essential for a plethora of offshore activities. Even though aerial image datasets through Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques can provide a low-cost alternative compared to LiDAR and SONAR, offering additionally, important visual information, water refraction poses significant obstacles in delivering accurate bathymetry. In this article, the generation of manned and unmanned airborne synthetic datasets of dry and water covered areas is presented. These data are used to train models for correcting the geometric effects of refraction on real-world image-based point clouds and aerial images. Based on a thorough evaluation, important improvements are presented, indicating the increased accuracy and the reduced noise in the point clouds of the derived bathymetric products, meeting also the International Hydrographic Organization’s (IHO) standards.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Scienceen_US
dc.rights© Springer Natureen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAirborneen_US
dc.subjectBathymetryen_US
dc.subjectCoastal mappingen_US
dc.subjectMachine learningen_US
dc.subjectRefraction correctionen_US
dc.subjectShallow watersen_US
dc.subjectSupport vector regressionen_US
dc.subjectSynthetic dataen_US
dc.subjectUAVen_US
dc.titleLearning from Synthetic Data: Enhancing Refraction Correction Accuracy for Airborne Image-Based Bathymetric Mapping of Shallow Coastal Watersen_US
dc.typeArticleen_US
dc.collaborationNational Technical University Of Athensen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/s41064-021-00144-1en_US
dc.identifier.scopus2-s2.0-85105562983-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85105562983-
dc.relation.issue2en_US
dc.relation.volume89en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage91en_US
dc.identifier.epage109en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn2512-2819-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4474-5007-
crisitem.author.orcid0000-0002-2732-4780-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

6
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

305
Last Week
1
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons