Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22646
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorNikolaidis, Pavlos-
dc.contributor.authorChatzis, Sotirios P.-
dc.date.accessioned2021-06-07T09:57:43Z-
dc.date.available2021-06-07T09:57:43Z-
dc.date.issued2021-09-
dc.identifier.citationInternational Journal of Electrical Power & Energy Systems, 2021, vol. 130. articl. no. 106930en_US
dc.identifier.issn01420615-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22646-
dc.description.abstractGlobal efforts aiming to shift towards de-carbonization give rise to remarkable challenges for power systems and their operators. Modern power systems need to deal with the uncertain and volatile behavior of their components (especially, renewable energy generation); this necessitates the use of increased operating reserves. To ameliorate this expensive requirement, intelligent systems for determining appropriate unit commitment schedules have risen as a promising solution. This is especially the case for weak power systems with low dispatching flexibility and high dependency on imported fossil fuels. In this work, we introduce a radically new paradigm for addressing the optimal unit commitment problem, that is capable of accounting for the largely unaddressed challenge of the uncertain and volatile behavior of modern power systems. Our solution leverages widely adopted developments in the field of uncertainty-aware machine learning models, namely Bayesian optimization. This framework enables the effective discovery of the best possible configuration of a volatile system with uncertain and unknown dynamics, without the need of introducing restrictive prior assumptions. Based on appropriately selected acquisition function and Gaussian process regression, it constitutes a radically different from existing approaches, which heavily rely on heuristic approximations and do not allow to account for volatile behavioral patterns. On the contrary, it guarantees global optimum solutions in non-convex optimization tasks in the least possible number of trials. The demonstrated results show better performance in terms of total production cost and number of function evaluations, inspiring system operators to better schedule their power networks in the forthcoming, de-carbonized grids.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Electrical Power & Energy Systemsen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectUnit commitmenten_US
dc.subjectMachine learning modelen_US
dc.subjectBayesian optimizationen_US
dc.subjectGlobal optimizationen_US
dc.subjectVolatile behavioral patternsen_US
dc.titleGaussian process-based Bayesian optimization for data-driven unit commitmenten_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.ijepes.2021.106930en_US
dc.relation.volume130en_US
cut.common.academicyear2021-2022en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0142-0615-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

18
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

17
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s)

335
Last Week
0
Last month
7
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons