Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/22646
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Nikolaidis, Pavlos | - |
dc.contributor.author | Chatzis, Sotirios P. | - |
dc.date.accessioned | 2021-06-07T09:57:43Z | - |
dc.date.available | 2021-06-07T09:57:43Z | - |
dc.date.issued | 2021-09 | - |
dc.identifier.citation | International Journal of Electrical Power & Energy Systems, 2021, vol. 130. articl. no. 106930 | en_US |
dc.identifier.issn | 01420615 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/22646 | - |
dc.description.abstract | Global efforts aiming to shift towards de-carbonization give rise to remarkable challenges for power systems and their operators. Modern power systems need to deal with the uncertain and volatile behavior of their components (especially, renewable energy generation); this necessitates the use of increased operating reserves. To ameliorate this expensive requirement, intelligent systems for determining appropriate unit commitment schedules have risen as a promising solution. This is especially the case for weak power systems with low dispatching flexibility and high dependency on imported fossil fuels. In this work, we introduce a radically new paradigm for addressing the optimal unit commitment problem, that is capable of accounting for the largely unaddressed challenge of the uncertain and volatile behavior of modern power systems. Our solution leverages widely adopted developments in the field of uncertainty-aware machine learning models, namely Bayesian optimization. This framework enables the effective discovery of the best possible configuration of a volatile system with uncertain and unknown dynamics, without the need of introducing restrictive prior assumptions. Based on appropriately selected acquisition function and Gaussian process regression, it constitutes a radically different from existing approaches, which heavily rely on heuristic approximations and do not allow to account for volatile behavioral patterns. On the contrary, it guarantees global optimum solutions in non-convex optimization tasks in the least possible number of trials. The demonstrated results show better performance in terms of total production cost and number of function evaluations, inspiring system operators to better schedule their power networks in the forthcoming, de-carbonized grids. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | International Journal of Electrical Power & Energy Systems | en_US |
dc.rights | © Elsevier | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Unit commitment | en_US |
dc.subject | Machine learning model | en_US |
dc.subject | Bayesian optimization | en_US |
dc.subject | Global optimization | en_US |
dc.subject | Volatile behavioral patterns | en_US |
dc.title | Gaussian process-based Bayesian optimization for data-driven unit commitment | en_US |
dc.type | Article | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.journals | Subscription | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/j.ijepes.2021.106930 | en_US |
dc.relation.volume | 130 | en_US |
cut.common.academicyear | 2021-2022 | en_US |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.openairetype | article | - |
item.fulltext | No Fulltext | - |
crisitem.journal.journalissn | 0142-0615 | - |
crisitem.journal.publisher | Elsevier | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4956-4013 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
18
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
17
Last Week
0
0
Last month
1
1
checked on 29 Οκτ 2023
Page view(s)
335
Last Week
0
0
Last month
7
7
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons