Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2228
DC FieldValueLanguage
dc.contributor.authorEfstathiou, Angelos M.-
dc.contributor.authorOlympiou, Georgios-
dc.date.accessioned2013-01-22T16:14:52Zen
dc.date.accessioned2013-05-16T06:25:28Z-
dc.date.accessioned2015-12-02T09:16:11Z-
dc.date.available2013-01-22T16:14:52Zen
dc.date.available2013-05-16T06:25:28Z-
dc.date.available2015-12-02T09:16:11Z-
dc.date.issued2011-06-01-
dc.identifier.citationChemical Engineering Journal, 2011, vol. 170, no. 2-3, pp. 424-432en_US
dc.identifier.issn13858947-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2228-
dc.description.abstractWe describe here the performance of a novel MgO-CeO2-supported Pt nanocatalyst (∼1.5nm mean Pt particle size) towards the selective conversion of NO (XNO>90%) into N2 (SN2>80%) using H2 (H2-SCR) in the low-temperature range of 120-180°C for a wide range of O2, H2 and CO2 feed concentrations. This catalytic system showed remarkable performance under industrial process conditions of NOx control [1-5]. Using a feed composition containing 150ppm NO, 2vol% O2 and H2 in the 0.2-0.8vol% range (GHSV=33,000h-1), the NO conversion, XNO (%) and N2-selectivity, SN2 (%) were found to increase with increasing H2 feed concentration in the 120-180°C range, where NO conversions in the 97-100% range and N2-selectivities in the 83-93% range were obtained. By increasing the O2 feed concentration from zero to 5vol%, both the XNO (%) and the SN2 (%) were found to decrease by an extent which was dependent of reaction temperature. The effect of CO2 in the feed stream (0-12vol%) was found to be slightly negative for the NO conversion, while an opposite behavior was found for the SN2 (%), likely due to competitive adsorption of CO2 and NO on the same non-selective NOx adsorption sites. In situ DRIFTS studies have shown that the oxygen feed concentration largely influenced the surface concentration of inactive NOx and only slightly that of active NOx intermediates of H2-SCR but not their chemical structure.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofChemical Engineering Journalen_US
dc.rights© Elsevieren_US
dc.subjectH2-SCRen_US
dc.subjectLean de-NOxen_US
dc.subjectNO reductionen_US
dc.subjectSupported-Pt catalysten_US
dc.titleIndustrial nox control via h2-scr on a novel supported-pt nanocatalysten_US
dc.typeArticleen_US
dc.affiliationCyprus University of Technologyen
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryChemical Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.cej.2011.01.001en_US
dc.dept.handle123456789/54en
dc.relation.issue2-3en_US
dc.relation.volume170en_US
cut.common.academicyear2010-2011en_US
dc.identifier.spage424en_US
dc.identifier.epage432en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1385-8947-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

85
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

81
Last Week
0
Last month
0
checked on Oct 25, 2023

Page view(s) 10

546
Last Week
1
Last month
5
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.