Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2099
Title: A graph approach to generate all possible regression submodels
Authors: Gatu, Cristian 
Yanev, Petko I. 
Kontoghiorghes, Erricos John 
metadata.dc.contributor.other: Κοντογιώργης, Έρρικος Γιάννης
Major Field of Science: Natural Sciences
Keywords: Regression analysis;Algorithms;Branch-and-bound algorithm;Computer simulation;Set theory
Issue Date: 15-Oct-2007
Source: Computational Statistics and Data Analysis, 2007, vol. 52, no. 2, pp. 799-815.
Volume: 52
Issue: 2
Start page: 799
End page: 815
Journal: Computational Statistics and Data Analysis 
Abstract: A regression graph to enumerate and evaluate all possible subset regression models is introduced. The graph is a generalization of a regression tree. All the spanning trees of the graph are minimum spanning trees and provide an optimal computational procedure for generating all possible submodels. Each minimum spanning tree has a different structure and characteristics. An adaptation of a branch-and-bound algorithm which computes the best-subset models using the regression graph framework is proposed. Experimental results and comparison with an existing method based on a regression tree are presented and discussed.
URI: https://hdl.handle.net/20.500.14279/2099
ISSN: 1679473
DOI: 10.1016/j.csda.2007.02.018
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
Affiliation : Université de Neuchâtel 
University of Plovdiv “Paisii Hilendarski,” Bulgaria 
University of Cyprus 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

SCOPUSTM   
Citations

23
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

24
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 5

586
Last Week
0
Last month
2
checked on Dec 3, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons