Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2053
DC FieldValueLanguage
dc.contributor.authorYanev, Petko I.-
dc.contributor.authorKontoghiorghes, Erricos John-
dc.date.accessioned2013-01-30T13:20:26Zen
dc.date.accessioned2013-05-16T08:22:25Z-
dc.date.accessioned2015-12-02T09:34:34Z-
dc.date.available2013-01-30T13:20:26Zen
dc.date.available2013-05-16T08:22:25Z-
dc.date.available2015-12-02T09:34:34Z-
dc.date.issued2006-02-
dc.identifier.citationParallel Computing, 2006, vol. 32, no. 2, pp. 195-204en_US
dc.identifier.issn01678191-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2053-
dc.description.abstractComputationally efficient serial and parallel algorithms for estimating the general linear model are proposed. The sequential block-recursive algorithm is an adaptation of a known Givens strategy that has as a main component the Generalized QR decomposition. The proposed algorithm is based on orthogonal transformations and exploits the triangular structure of the Cholesky QRD factor of the variance-covariance matrix. Specifically, it computes the estimator of the general linear model by solving recursively a series of smaller and smaller generalized linear least squares problems. The new algorithm is found to outperform significantly the corresponding LAPACK routine. A parallel version of the new sequential algorithm which utilizes an efficient distribution of the matrices over the processors and has low inter-processor communication is developed. The theoretical computational complexity of the parallel algorithms is derived and analyzed. Experimental results are presented which confirm the theoretical analysis. The parallel strategy is found to be scalable and highly efficient for estimating large-scale general linear estimation problems.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofParallel Computingen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectParallel algorithmsen_US
dc.subjectComputational complexityen_US
dc.subjectEstimationen_US
dc.subjectLinear systemsen_US
dc.subjectMathematical modelsen_US
dc.subjectProblem solvingen_US
dc.titleEfficient algorithms for estimating the general linear modelen_US
dc.typeArticleen_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationUniversity of Londonen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.parco.2005.06.007en_US
dc.dept.handle123456789/54en
dc.relation.issue2en_US
dc.relation.volume32en_US
cut.common.academicyear2005-2006en_US
dc.identifier.spage195en_US
dc.identifier.epage204en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0167-8191-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-9704-9510-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

7
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

535
Last Week
0
Last month
3
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons