Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2035
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorYanev, Petko I.-
dc.contributor.authorKontoghiorghes, Erricos John-
dc.date.accessioned2013-01-28T12:47:44Zen
dc.date.accessioned2013-05-16T08:22:24Z-
dc.date.accessioned2015-12-02T09:34:09Z-
dc.date.available2013-01-28T12:47:44Zen
dc.date.available2013-05-16T08:22:24Z-
dc.date.available2015-12-02T09:34:09Z-
dc.date.issued2007-11-
dc.identifier.citationApplied Numerical Mathematics, 2007, vol. 57, no. 11-12, pp. 1245-1258.en_US
dc.identifier.issn01689274-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2035-
dc.description.abstractComputational strategies for estimating the seemingly unrelated regressions model after been updated with new observations are proposed. A sequential block algorithm based on orthogonal transformations and rich in BLAS-3 operations is proposed. It exploits efficiently the sparse structure of the data matrix and the Cholesky factor of the variance-covariance matrix. A parallel version of the new estimation algorithms for two important classes of models is considered. The parallel algorithm utilizes an efficient distribution of the matrices over the processors and has low inter-processor communication. Theoretical and experimental results are presented and analyzed. The parallel algorithm is found for these classes of models to be scalable and efficienten_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofApplied Numerical Mathematicsen_US
dc.rights© Elsevieren_US
dc.subjectParallel algorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectRegression analysisen_US
dc.titleComputationally efficient methods for estimating the updated-observations SUR modelsen_US
dc.typeArticleen_US
dc.affiliationCyprus University of Technologyen
dc.collaborationUniversity of Cyprusen_US
dc.collaborationUniversity of Plovdiv “Paisii Hilendarski,” Bulgariaen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryBulgariaen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.apnum.2007.01.004en_US
dc.dept.handle123456789/54en
dc.relation.issue11-12en_US
dc.relation.volume57en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage1245en_US
dc.identifier.epage1258en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0168-9274-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-9704-9510-
crisitem.author.parentorgFaculty of Management and Economics-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Doc...doc23.5 kBMicrosoft WordΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

2
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

2
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

485
Last Week
1
Last month
32
checked on 14 Μαρ 2025

Download(s)

107
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα