Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1990
DC FieldValueLanguage
dc.contributor.authorKontoghiorghes, Erricos John-
dc.contributor.otherΚοντογιώργης, Έρρικος Γιάννης-
dc.date.accessioned2013-02-01T13:18:42Zen
dc.date.accessioned2013-05-16T08:22:28Z-
dc.date.accessioned2015-12-02T09:32:39Z-
dc.date.available2013-02-01T13:18:42Zen
dc.date.available2013-05-16T08:22:28Z-
dc.date.available2015-12-02T09:32:39Z-
dc.date.issued1999-
dc.identifier.citationConcurrency Practice and Experience, 1999, vol. 11, no. 7, pp. 323-341en_US
dc.identifier.issn10403108-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1990-
dc.description.abstractEfficient algorithms for estimating the coefficient parameters of the ordinary linear model on a massively parallel SIMD computer are presented. The numerical stability of the algorithms is ensured by using orthogonal transformations in the form of Householder reflections and Givens plane rotations to compute the complete orthogonal decomposition of the coefficient matrix. Algorithms for reconstructing the orthogonal matrices involved in the decompositions are also designed, implemented and analyzed. The implementation of all algorithms on the targeted SIMD array processor is considered in detail. Timing models for predicting the execution time of the implementations are derived using regression modelling methods. The timing models also provide an insight into how the algorithms interact with the parallel computer. The predetermined factors used in the regression fits are derived from the number of memory layers involved in the factorization process of the matrices. Experimental results show the high accuracy and predictive power of the timing models.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofConcurrency Practice and Experienceen_US
dc.rights© Wileyen_US
dc.subjectAlgorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectRegression analysisen_US
dc.titleOrdinary linear model estimation on a massively parallel simd computeren_US
dc.typeArticleen_US
dc.collaborationUniversité de Neuchâtelen_US
dc.journalsSubscriptionen_US
dc.countrySwitzerlanden_US
dc.subject.fieldSocial Sciencesen_US
dc.identifier.doi10.1002/(SICI)1096-9128(199906)11:7<323::AID-CPE425>3.0.CO;2-Ien_US
dc.dept.handle123456789/54en
dc.relation.issue7en_US
dc.relation.volume11en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage323en_US
dc.identifier.epage341en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-9704-9510-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 9, 2023

Page view(s) 10

569
Last Week
0
Last month
4
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.