Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1956
DC FieldValueLanguage
dc.contributor.authorWallace, Manolis-
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.authorKollias, Stefanos D.-
dc.date.accessioned2009-05-26T07:51:18Zen
dc.date.accessioned2013-05-16T13:11:03Z-
dc.date.accessioned2015-12-02T09:41:17Z-
dc.date.available2009-05-26T07:51:18Zen
dc.date.available2013-05-16T13:11:03Z-
dc.date.available2015-12-02T09:41:17Z-
dc.date.issued2004-
dc.identifier.citationNeural Networks, 2004, Vol. 18, no. 2, pp. 117-122en_US
dc.identifier.issn08936080-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1956-
dc.description.abstractIn any neural network system, proper parameter initialization reduces training time and effort, and generally leads to compact modeling of the process under examination, i.e. less complex network structures and better generalization. However, in cases of multi-dimensional data, parameter initialization is both difficult and time consuming. In the proposed scheme a novel, multi-dimensional, unsupervised clustering method is used to properly initialize neural network architectures, focusing on resource allocating networks (RAN); both the hidden and output layer parameters are determined by the output of the clustering process, without the need for any user interference. The main contribution of this work is that the proposed approach leads to network structures that are compact, efficient and achieve best classification results, without the need for manual selection of suitable initial network parameters. The efficiency of the proposed method has been tested on several classes of publicly available data, such as iris, Wisconsin and ionosphere data.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNeural Networksen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectWisconsinen_US
dc.subjectIonosphereen_US
dc.subjectResource allocating networksen_US
dc.titleIntelligent initialization of resource allocating RBF networksen_US
dc.typeArticleen_US
dc.link10.1016/j.neunet.2004.11.005en_US
dc.collaborationUniversity of Indianapolisen_US
dc.collaborationNational Technical University Of Athensen_US
dc.subject.categoryENGINEERING AND TECHNOLOGYen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.dept.handle123456789/54en
dc.relation.issue2en_US
dc.relation.volume18en_US
cut.common.academicyear2003-2004en_US
dc.identifier.spage117en_US
dc.identifier.epage122en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0893-6080-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 10

554
Last Week
0
Last month
3
checked on Dec 22, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons