Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/19324
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Herodotou, Herodotos | - |
dc.contributor.author | Chen, Yuxing | - |
dc.contributor.author | Lu, Jiaheng | - |
dc.date.accessioned | 2020-11-05T08:55:05Z | - |
dc.date.available | 2020-11-05T08:55:05Z | - |
dc.date.issued | 2020-06 | - |
dc.identifier.citation | ACM Computing Surveys, 2020, vol. 53, no 2, articl. no. 3381027 | en_US |
dc.identifier.issn | 15577341 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/19324 | - |
dc.description.abstract | Big data processing systems (e.g., Hadoop, Spark, Storm) contain a vast number of configuration parameters controlling parallelism, I/O behavior, memory settings, and compression. Improper parameter settings can cause significant performance degradation and stability issues. However, regular users and even expert administrators grapple with understanding and tuning them to achieve good performance. We investigate existing approaches on parameter tuning for both batch and stream data processing systems and classify them into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. We summarize the pros and cons of each approach and raise some open research problems for automatic parameter tuning. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | ACM Computing Surveys | en_US |
dc.rights | © owner/author(s). | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | MapReduce | en_US |
dc.subject | Parameter tuning | en_US |
dc.subject | Self-tuning | en_US |
dc.subject | Spark | en_US |
dc.subject | Storm | en_US |
dc.subject | Stream | en_US |
dc.title | A Survey on Automatic Parameter Tuning for Big Data Processing Systems | en_US |
dc.type | Article | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | University of Helsinki | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.journals | Open Access | en_US |
dc.country | Cyprus | en_US |
dc.country | Finland | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1145/3381027 | en_US |
dc.relation.issue | 2 | en_US |
dc.relation.volume | 53 | en_US |
cut.common.academicyear | 2019-2020 | en_US |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.openairetype | article | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.journal.journalissn | 1557-7341 | - |
crisitem.journal.publisher | Association for Computing Machinery | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-8717-1691 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
3381027.pdf | Fulltext | 900.91 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
54
checked on Nov 6, 2023
WEB OF SCIENCETM
Citations
40
Last Week
0
0
Last month
4
4
checked on Oct 26, 2023
Page view(s)
318
Last Week
0
0
Last month
6
6
checked on Feb 3, 2025
Download(s)
223
checked on Feb 3, 2025
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License