Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/19324
DC FieldValueLanguage
dc.contributor.authorHerodotou, Herodotos-
dc.contributor.authorChen, Yuxing-
dc.contributor.authorLu, Jiaheng-
dc.date.accessioned2020-11-05T08:55:05Z-
dc.date.available2020-11-05T08:55:05Z-
dc.date.issued2020-06-
dc.identifier.citationACM Computing Surveys, 2020, vol. 53, no 2, articl. no. 3381027en_US
dc.identifier.issn15577341-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19324-
dc.description.abstractBig data processing systems (e.g., Hadoop, Spark, Storm) contain a vast number of configuration parameters controlling parallelism, I/O behavior, memory settings, and compression. Improper parameter settings can cause significant performance degradation and stability issues. However, regular users and even expert administrators grapple with understanding and tuning them to achieve good performance. We investigate existing approaches on parameter tuning for both batch and stream data processing systems and classify them into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. We summarize the pros and cons of each approach and raise some open research problems for automatic parameter tuning.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofACM Computing Surveysen_US
dc.rights© owner/author(s).en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMapReduceen_US
dc.subjectParameter tuningen_US
dc.subjectSelf-tuningen_US
dc.subjectSparken_US
dc.subjectStormen_US
dc.subjectStreamen_US
dc.titleA Survey on Automatic Parameter Tuning for Big Data Processing Systemsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Helsinkien_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryFinlanden_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1145/3381027en_US
dc.relation.issue2en_US
dc.relation.volume53en_US
cut.common.academicyear2019-2020en_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.journal.journalissn1557-7341-
crisitem.journal.publisherAssociation for Computing Machinery-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
3381027.pdfFulltext900.91 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

54
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

40
Last Week
0
Last month
4
checked on Oct 26, 2023

Page view(s)

318
Last Week
0
Last month
6
checked on Feb 3, 2025

Download(s)

223
checked on Feb 3, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons