Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19244
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorChristodoulou, Evripides-
dc.contributor.authorGregoriades, Andreas-
dc.contributor.authorPampaka, Maria-
dc.contributor.authorHerodotou, Herodotos-
dc.date.accessioned2020-10-22T06:03:02Z-
dc.date.available2020-10-22T06:03:02Z-
dc.date.issued2020-05-16-
dc.identifier.citation32nd International Conference on Advanced Information Systems Engineering, 8-12 June 2020, Grenoble, Franceen_US
dc.identifier.isbn9783030491642-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19244-
dc.description.abstractThis paper applies a smart tourism approach to tourist destination marketing campaigns through the analysis of tourists’ reviews from TripAdvisor to identify significant patterns in the data. The proposed method combines topic modelling using Structured Topic Analysis with sentiment polarity, information on culture, and purchasing power of tourists for the development of a Decision Tree (DT) to predict tourists’ experience. For data collection and analysis, several custom-made python scripts were used. Data underwent integration, cleansing, incomplete data processing, and imbalance data treatments prior to being analysed. The patterns that emerged from the DT are expressed in terms of rules that highlight variable combinations leading to negative or positive sentiment. The generated predictive model can be used by destination management to tailor marketing strategy by targeting tourists who are more likely to be satisfied at the destination according to their needs.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© Springer Natureen_US
dc.subjectTopic modellingen_US
dc.subjectSentiment analysisen_US
dc.subjectDecision treeen_US
dc.subjectTourists’ reviewsen_US
dc.titleCombination of Topic Modelling and Decision Tree Classification for Tourist Destination Marketingen_US
dc.typeBook Chapteren_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Manchesteren_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Advanced Information Systems Engineeringen_US
dc.identifier.doi10.1007/978-3-030-49165-9_9en_US
dc.identifier.scopus2-s2.0-85085513758en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85085513758en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypebookPart-
crisitem.author.deptDepartment of Management, Entrepreneurship and Digital Business-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7422-1514-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

7
checked on 14 Μαρ 2024

Page view(s)

339
Last Week
0
Last month
1
checked on 17 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα