Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/18644
DC FieldValueLanguage
dc.contributor.authorAgapiou, Athos-
dc.date.accessioned2020-08-17T07:24:49Z-
dc.date.available2020-08-17T07:24:49Z-
dc.date.issued2020-06-26-
dc.identifier.citationDrones, 2020, vol. 4, no. 2, articl. no. 27en_US
dc.identifier.issn2504-446X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/18644-
dc.description.abstractRed–green–blue (RGB) cameras which are attached in commercial unmanned aerial vehicles (UAVs) can support remote-observation small-scale campaigns, by mapping, within a few centimeter’s accuracy, an area of interest. Vegetated areas need to be identified either for masking purposes (e.g., to exclude vegetated areas for the production of a digital elevation model (DEM) or for monitoring vegetation anomalies, especially for precision agriculture applications. However, while detection of vegetated areas is of great importance for several UAV remote sensing applications, this type of processing can be quite challenging. Usually, healthy vegetation can be extracted at the near-infrared part of the spectrum (approximately between 760–900 nm), which is not captured by the visible (RGB) cameras. In this study, we explore several visible (RGB) vegetation indices in different environments using various UAV sensors and cameras to validate their performance. For this purposes, openly licensed unmanned aerial vehicle (UAV) imagery has been downloaded “as is” and analyzed. The overall results are presented in the study. As it was found, the green leaf index (GLI) was able to provide the optimum results for all case studies.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relationNAVIGATOR: Copernicus Earth Observation Big Data for Cultural Heritageen_US
dc.relationERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environmenten_US
dc.relation.ispartofDronesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectVegetation indicesen_US
dc.subjectRGB camerasen_US
dc.subjectUnmanned aerial vehicle (UAV)en_US
dc.subjectEmpirical line methoden_US
dc.subjectGreen leaf indexen_US
dc.subjectOpen aerial mapen_US
dc.titleVegetation Extraction Using Visible-Bands from Openly Licensed Unmanned Aerial Vehicle Imageryen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationERATOSTHENES Centre of Excellenceen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.3390/drones4020027en_US
dc.relation.issue2en_US
dc.relation.volume4en_US
cut.common.academicyear2020-2021en_US
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2504-446X-
crisitem.journal.publisherMDPI-
crisitem.project.funderEuropean Commission-
crisitem.project.grantnoEXCELLENCE/0918/0052-
crisitem.project.grantnoH2020-WIDESPREAD-2018-01 / WIDESPREAD-01-2018-2019 Teaming Phase 2-
crisitem.project.fundingProgramExcellence Hubs-
crisitem.project.fundingProgramH2020 Spreading Excellence, Widening Participation, Science with and for Society-
crisitem.project.openAireinfo:eu-repo/grantAgreeent/EC/H2020/857510-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-9106-6766-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Publications under the auspices of the EXCELSIOR H2020 Teaming Project/ERATOSTHENES Centre of Excellence
Files in This Item:
File Description SizeFormat
Vegetation Extraction.pdf8.59 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

18
checked on Nov 6, 2023

WEB OF SCIENCETM
Citations

16
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

284
Last Week
4
Last month
10
checked on May 13, 2024

Download(s)

178
checked on May 13, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons