
drones

Article

Vegetation Extraction Using Visible-Bands from
Openly Licensed Unmanned Aerial Vehicle Imagery

Athos Agapiou 1,2

1 Remote Sensing and Geo-Environment Lab, Department of Civil Engineering and Geomatics,
Faculty of Engineering and Technology, Cyprus University of Technology, Saripolou 2-8, Limassol 3036,
Cyprus; athos.agapiou@cut.ac.cy; Tel.: +357-25-002471

2 Eratosthenes Centre of Excellence, Saripolou 2-8, Limassol 3036, Cyprus

Received: 25 May 2020; Accepted: 25 June 2020; Published: 26 June 2020
����������
�������

Abstract: Red–green–blue (RGB) cameras which are attached in commercial unmanned aerial
vehicles (UAVs) can support remote-observation small-scale campaigns, by mapping, within a few
centimeter’s accuracy, an area of interest. Vegetated areas need to be identified either for masking
purposes (e.g., to exclude vegetated areas for the production of a digital elevation model (DEM) or
for monitoring vegetation anomalies, especially for precision agriculture applications. However,
while detection of vegetated areas is of great importance for several UAV remote sensing applications,
this type of processing can be quite challenging. Usually, healthy vegetation can be extracted at
the near-infrared part of the spectrum (approximately between 760–900 nm), which is not captured
by the visible (RGB) cameras. In this study, we explore several visible (RGB) vegetation indices
in different environments using various UAV sensors and cameras to validate their performance.
For this purposes, openly licensed unmanned aerial vehicle (UAV) imagery has been downloaded
“as is” and analyzed. The overall results are presented in the study. As it was found, the green leaf
index (GLI) was able to provide the optimum results for all case studies.

Keywords: vegetation indices; RGB cameras; unmanned aerial vehicle (UAV); empirical line method;
Green leaf index; open aerial map

1. Introduction

Unmanned aerial vehicles (UAVs) are widely applied for monitoring and mapping purposes
all around the world [1–4]. The use of relatively low-cost commercial UAV platforms can produce
high-resolution visible orthophotos, thus providing an increased resolution product in comparison to
the traditional aerial or satellite observations. Throughout the years, the technological development
in sensors and the decrease in the cost of the UAV sensors has popularized them both to experts as
well as amateurs [5,6]. While several countries have lately adopted restrictions due to safety reasons,
UAVs are still being used for mapping relatively small areas (in comparison to aerial and satellite
observations) [7].

Today a variety of UAVs and cameras exist in the market, providing a plethora of options to
end-users. As [8] mentioned in their work, UAVs can be classified according to the characteristics of
the drones, such as their size, ranging from nano (<30 mm) to large size (>2 m) drones, their maximum
take-off weight (from less than 1 kg to more than 25 kg), their range of operation, etc. In addition,
existing UAVs’ cameras can also be classified into visible red–green–blue (RGB), near-infrared (NIR),
multispectral, hyperspectral, and thermal cameras.

Once the stereo pairs of the images are taken from the UAV camera sensors, these are processed
using known control points and orthorectified based on the digital surface model (DSM) produced
by the triangulation of the stereo pairs [9]. In many applications, the detection of vegetated areas is
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essential, as in the case of monitoring agricultural areas or forests [10–13]. Even if vegetation is not a
goal of a study, vegetation needs to be masked out to produce a digital elevation model (DEM) and
provide realistic contours of the area.

Vegetated areas can usually be detected using the near-infrared part of the spectrum (approximately
between 760–900 nm). At this spectral range, healthy vegetation tends to give high reflectance values
in comparison to the visible bands (red–green–blue, RGB) [14]. The sudden increase in reflectance
at the near-infrared part of the spectrum is a unique characteristic of healthy vegetation. For this
reason, the specific spectral window has been widely exploited in remote sensing applications. Indeed,
numerous vegetation indices based on different mathematical equations have been developed in the
last decades, aiming to detect healthy vegetation, taking into consideration atmospheric effects and the
soil background reflectance noise [15]. One of the most common vegetation indexes applied in remote
sensing applications is the so-called normalized difference vegetation index (NDVI), which is estimated
using the reflectance values of the near-infrared and the red bands of multispectral images [16].

However, in most UAV cameras, the near-infrared part of the spectrum which is sensitive
to vegetation is absent. UAVs cameras are normally sensitive to recording the visible part of the
spectrum (red–green–blue), thus making the detection of vegetated areas quite challenging. In addition,
radiometric calibration of the images is needed to convert the raw digital numbers (DNs) into reflectance
values. To do this, calibration targets and field campaigns are essential to have a good approximation
of the backscattered radiance of the various targets observed in the orthophotos [17,18].

This study aims to investigate the detection of vegetated areas based on limited metadata
information, and with no information regarding the reflectance properties of targets visible in the
orthophoto. For this reason, five orthophotos from openly licensed an unmanned aerial vehicle (UAV)
imagery repository was used, while simplifying linear regression models were established to convert
the DNs of the images to reflectance values. Once this was accomplished, then more than ten (10)
different visible vegetation indices were applied, and their results are discussed. The methodology
presented here can, therefore, be used in products where knowledge is limited, and the extraction of
vegetation is needed to be carried out in a semi-automatic way.

2. Materials and Methods

For the needs of the current study, five different datasets were selected through the OpenAerialMap
platform [19]. The OpenAerialMap relies on a set of open-source tools, where users can upload
their products, such as orthophotos, filling basic metadata information, to support their re-use.
OpenAerialMap provides a set of tools for searching, sharing, and using openly licensed satellite and
unmanned aerial vehicle (UAV) imagery. The platform is operated by the Open Imagery Network
(OIN). All images uploaded in the platform are publicly licensed under the Creative Commons (CC)
license (CC-BY 4.0), thus allowing both sharing and adaptation of the content from third parties and
other users.

The case studies were selected based on the following criteria: (1) have a different context, (2) have
a different geographical distribution, (3) captured by different UAV/camera sensors, and (4) quality
of the final orthophoto. In the end, the following case studies were identified and downloaded for
further processing (Table 1). A preview of these areas can be found in Figure 1. Case study 1 was a
6 cm-resolution orthophoto, from a highly urbanized area (Figure 1a), located in the Philippines, where
vegetation was randomly scattered. A mixed environment was selected as the second case study from
St. Petersburg in Russia (Figure 1b), where both high trees, grassland, and buildings were visible.
A UAV corridor mapping along a river near the Arta city, Greece, was the third case study (Figure 1c).
At the same time, it should be mentioned that watergrass was also visible in this orthophoto.
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Table 1. Case studies selected through the OpenAerialMap [19].

No. Case Study Location UAV Camera Sensor Named Resolution Preview

1 Highly urbanized area Taytay, Philippines DJI Mavic 2 Pro 6 cm Figure 1a
2 Campus St. Petersburg, Russia DJI Mavic 2 Pro 5 cm Figure 1b
3 River-corridor Arta, Greece DJI FC6310 5 cm Figure 1c
4 Picnic area Ohio, USA SONY DSC-WX220 6 cm Figure 1d
5 Agricultural area Nîmes, France Parrot Anafi 5 cm Figure 1e
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Figure 1. Case studies selected through the OpenAerialMap [19]. (a) a highly urbanized area, at 
Taytay, Philippines, (b) a campus at St. Petersburg, Russia, (c) a river near Arta, Greece, (d) a picnic 
area at Ohio, USA, (e) an agricultural area at Nîmes, France, and (f) the geographical distribution of 
the selected case studies. 
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using the empirical line method (ELM) [18]. The ELM is a simple and direct approach to calibrate DN 
of images to approximated units of surface reflectance in the case where no further information is 
available as in our example. The ELM method aims to build a relationship between at-sensor radiance 
and at-surface reflectance by computing non-variant spectral targets and comparing these 
measurements with the respective DNs in the image. The calibration of raw DNs to surface 
reflectance factor is based on a linear relationship for each image band using reflectance targets of the 
image. The derived prediction equations can consider changes in illumination and atmospheric 
effects [20]. In our case study, since no additional information was available, the impact of the 
atmospheric effects was ignored. The ELM for the RGB UAV sensed data could be estimated using 
the following equation: 
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Figure 1. Case studies selected through the OpenAerialMap [19]. (a) a highly urbanized area, at Taytay,
Philippines, (b) a campus at St. Petersburg, Russia, (c) a river near Arta, Greece, (d) a picnic area
at Ohio, USA, (e) an agricultural area at Nîmes, France, and (f) the geographical distribution of the
selected case studies.

The next case study referred to a picnic area at Ohio, USA, with low vegetation (grass) and some
sporadic high trees (Figure 1d), while the last case study was an agricultural field near Nîmes, France.
All orthophotos have a named resolution of few centimeters (5–6 cm), without the ability to evaluate
further geometric distortions of the images (e.g., radial distortion, root mean square error, maximum
horizontal and vertical error, and distribution of the control points). Therefore, these orthophotos were
further processed “as is”. The first two orthophotos were obtained using the DJI Mavic 2 Pro, while
the DJI FC6310 model was used for the case study of Greece. The SONY DSC-WX220 and Parrot Anafi
UAV models were used for the last two case studies.

Once the orthophotos were downloaded, the digital numbers (DN) of each band were calibrated
using the empirical line method (ELM) [18]. The ELM is a simple and direct approach to calibrate
DN of images to approximated units of surface reflectance in the case where no further information
is available as in our example. The ELM method aims to build a relationship between at-sensor
radiance and at-surface reflectance by computing non-variant spectral targets and comparing these
measurements with the respective DNs in the image. The calibration of raw DNs to surface reflectance
factor is based on a linear relationship for each image band using reflectance targets of the image.
The derived prediction equations can consider changes in illumination and atmospheric effects [20].
In our case study, since no additional information was available, the impact of the atmospheric effects
was ignored. The ELM for the RGB UAV sensed data could be estimated using the following equation:

ρ(λ) = A * DN + B, (1)
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where ρ(λ) is the reflectance value for a specific band (range 0%–100%), DNs are the raw digital
numbers of the orthophotos, and A and B are terms which can be determined using a least-square
fitting approach. Figure 2 illustrates the basic concept of the ELM calibration.
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Figure 2. Empirical line method (ELM) schematic diagram.

In the case where no appropriate targets were used, a simple normalization of the orthophotos was
followed using image statistics per each band. Once the orthophotos were radiometrically calibrated,
with pixel values between 0 and 1, various visible vegetation indices were applied. In specific,
we implemented ten (10) different equations, as shown in more detail in Table 2. The following
vegetation indices were applied to all case studies: (1) Normalized green–red difference index, (2) green
leaf index, (3) visible atmospherically resistant index, (4) triangular greenness index, (5) red–green
ratio index, (6) red–green–blue vegetation index, (7) red–green ratio index, (8) modified green–red
vegetation index, (9) excess green index, and (10) color index of vegetation. These indices explore in
different ways the visible bands (red–green–blue). The outcomes were then evaluated and compared
with random points defined in the orthophotos. The overall results are provided in the next section.

Table 2. Vegetation indices used in this study.

No. Vegetation Index Equation Ref.

1 NGRDI Normalized green red difference index (ρg − ρR)/(ρg + ρr) [21]
2 GLI Green leaf index (2 * ρg − ρr − ρb)/(2 * ρg + ρr + ρb) [22]
3 VARI Visible atmospherically resistant index (ρg − ρr)/(ρg + ρr − ρb) [23]
4 TGI Triangular greenness index 0.5 * [(λr − λb)(ρr − ρg) − (λr − λg)(ρr − ρb)] [24]
5 IRG Red–green Ratio index ρr − ρg [25]
6 RGBVI Red–green–blue vegetation index (ρg * ρg) − (ρr * ρb) /(ρg * ρg) + (ρr * ρb) [26]
7 RGRI Red–green ratio index ρr / ρg [27]
8 MGRVI Modified green–red vegetation index (ρg

2
− ρr

2)/ (ρg
2 + ρr

2) [26]
9 ExG Excess green index 2 * ρg − ρr − ρb [28]

10 CIVE Color index of vegetation 0.441* ρr − 0.881 * ρg + 0.385 * ρb + 18.787 [29]

where ρb is the reflectance at the blue band, ρg is the reflectance at the green band, ρr is the reflectance at the red
band, λb is the wavelength of the blue band, and λr is the wavelength of the red band.

3. Results

3.1. Radiometric Calibration of the Raw Orthophotos

After the detailed examination of the selected orthophotos, high target reflectance pixels were
identified and mapped in three out of the five case studies. These targets were selected, namely in case
study 1 (Figure 3a) and case study 2 (Figure 3b). For both these orthophoto, smooth white roofs were
found, and the average DN value per band was extracted. A similar procedure was also implemented
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for the fourth case study (Figure 3c), where a white high reflectance asphalt area was evident in the
southern part of the image. In contrast, no dark objects, such as deep water reservoirs, newly-placed
asphalt, or other black targets, were visible in these images. Therefore the ELM was applied using
as-known input parameters of the DNs from these high reflectance targets. For the rest orthophotos
(case study 3 and case study 5), no visible variant targets could be detected in the images due to their
environment. In these cases, an image normalization between 0 and 1, using the image statistics,
was implemented.
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Figure 3. High reflectance targets selected for case study 1 (a), case study 2 (b), and case study 4 (c). For case
studies 3 and 5, no appropriate targets were found, and an image-based normalization was applied.

Upon the radiometric calibration, several spectral signatures from different targets in the range of
the visible part of the spectrum (i.e., approximately between 450 and 760 nm) were plotted. This is an
easy way to understand if the simplified EML and image normalization procedures that we followed
here did not distort the reflectance of the targets. Figure 4 presents the results from the reflectance
analysis regarding the first case study (similar findings were also reported for the other case studies).
Three types of targets are presented here: vegetation (first row of Figure 4), asphalt (second row of
Figure 4), and soil (third row of Figure 4). Figure 4a,d,g shows the general location of these targets,
while a closer look at these targets is shown in Figure 4b,e,h, respectively. The spectral signature
diagram of the three targets can be seen in the last column of Figure 4 (Figure 4c,f,i). The vegetation
spectral profile (Figure 4c) followed the typical spectral behavior of healthy vegetation within this
part of the spectrum with low reflectance values in the blue and red part of the spectrum and higher
reflectance in the green band. Asphalt targets (Figure 4f) had a similar reflectance value for all three
bands, while its relatively high reflectance (i.e., between 60%–75%) can be explained due to the type of
the asphalt and its age. The soil spectral profile (Figure 4i) showed a similar pattern with the asphalt
with a slight increase in the reflectance as we moved from the blue to the red part of the spectrum.
Other types of targets (not shown here) had a reflectance pattern as those expected from the literature,
which is an indicator that the ELM did not distort any spectral band, and provided, as best as possible,
reasonable outcomes.
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Figure 4. High reflectance targets selected for case study 1 (a), case study 2 (b), and case study 4
(c). For case studies 3 and 5, no appropriate targets were found, and an image-based normalization
was applied.

3.2. Vegetation Indices

Once the orthophotos were radiometrically corrected, all vegetation indices mentioned in Table 2
were applied. The final results of this implementation for case studies 1 and 4 are shown in Figures 5
and 6, respectively. The calibrated RGB orthophoto of each case study is shown in Figures 5a
and 6a, while the normalized green–red difference index is shown in Figures 5b and 6b. Similarly,
Figures 5c–k and 6c–k show the results from the green leaf index, visible atmospherically resistant
index, triangular greenness index, red–green ratio index, red–green–blue vegetation index, red–green
ratio index, modified green–red vegetation index (i), excess green index, and color index of vegetation
(k), respectively. Vegetated areas are highlighted with the light grayscale tone, while non-vegetated
areas with the darkest tone of grey.

As shown in Figures 5 and 6, all vegetation indices were able to enhance vegetation in both areas;
however, the best performance was observed for Figure 5b,f,i. For Figure 6, a clearer view of the
vegetated areas can be detected in Figure 6e. Similar findings were also observed in the rest of the case
studies not shown here, indicating that visible vegetation indices using the RGB color can enhance
healthy vegetation; however, their performance rate is based on the context of the image. Indeed,
for instance, the triangular greenness index in Figure 5e tended to give poor results since vegetation
was not well enhanced in the urban environment. However, the same index was the best for the picnic
area in Figure 6e.
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Figure 5. Vegetation indices results applied in the red–green–blue (RGB) orthophoto of the case study 
no. 1 (a), normalized green–red difference index (b), green leaf index (c), visible atmospherically 
resistant index (d), triangular greenness index (e), red–green ratio index (f), red–green–blue 
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index (j), and color index of vegetation (k). Vegetated areas are highlighted with the light grayscale 
tone, during non-vegetated areas with darkest tone of gray. 

Figure 5. Vegetation indices results applied in the red–green–blue (RGB) orthophoto of the case study
No. 1 (a), normalized green–red difference index (b), green leaf index (c), visible atmospherically
resistant index (d), triangular greenness index (e), red–green ratio index (f), red–green–blue vegetation
index (g), red–green ratio index (h), modified green–red vegetation index (i), excess green index (j),
and color index of vegetation (k). Vegetated areas are highlighted with the light grayscale tone, during
non-vegetated areas with darkest tone of gray.
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normalized green–red difference index (b), green leaf index (c), visible atmospherically resistant index 
(d), triangular greenness index (e), red–green ratio index (f), red–green–blue vegetation index (g), 
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Extraction of the vegetated regions using RGB cameras can be quite problematic, regardless of 
the vegetation index applied, in an environment similar to the one of case study 3 (along a river). 
Figure 7 below shows a closer look at the northern part of the river for all ten vegetation indices 
mentioned in Table 2. While some indices can enhance the vegetation along the river, as the case of 
the normalized green–red difference index (Figure 7b), the river itself can also be characterized as 
"vegetated areas". This is due to the low level of water in the river and the apparent watergrass within 
the river. 

Therefore, as it was found from the visual interpretation of the results, the RGB vegetation 
indices can enhance vegetated areas. However, they can also give false results. For this reason, a 
statistical comparison for all vegetation indices and all case studies was applied. 

Figure 6. Vegetation indices results applied in the RGB orthophoto of the case study No. 4 (a),
normalized green–red difference index (b), green leaf index (c), visible atmospherically resistant
index (d), triangular greenness index (e), red–green ratio index (f), red–green–blue vegetation index
(g), red–green ratio index (h), modified green–red vegetation index (i), excess green index (j), and
color index of vegetation (k). Vegetated areas are highlighted with the light grayscale tone while
non-vegetated areas with the darkest tone of grey.

Extraction of the vegetated regions using RGB cameras can be quite problematic, regardless of the
vegetation index applied, in an environment similar to the one of case study 3 (along a river). Figure 7
below shows a closer look at the northern part of the river for all ten vegetation indices mentioned in
Table 2. While some indices can enhance the vegetation along the river, as the case of the normalized
green–red difference index (Figure 7b), the river itself can also be characterized as “vegetated areas”.
This is due to the low level of water in the river and the apparent watergrass within the river.

Therefore, as it was found from the visual interpretation of the results, the RGB vegetation indices
can enhance vegetated areas. However, they can also give false results. For this reason, a statistical
comparison for all vegetation indices and all case studies was applied.
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Figure 7. Vegetation indices results applied in the RGB orthophoto of the case study No. 3 (close look)
(a), normalized green–red difference index (b), green leaf index (c), visible atmospherically resistant
index (d), triangular greenness index (e), red–green ratio index (f), red–green–blue vegetation index
(g), red–green ratio index (h), modified green–red vegetation index (i), excess green index (j), and
color index of vegetation (k). Vegetated areas are highlighted with the light grayscale tone while
non-vegetated areas with the darkest tone of grey.

3.3. Statistics

To evaluate the overall performance of the ten vegetation indices (see Table 2) per case study,
several points were distributed in each orthophoto (100 in total per case study). These points were
randomly positioned either over vegetated areas (trees, grass, etc.) or scattered in other types of
targets (e.g., asphalt, roofs, water, etc.). The geographical distributions of the points per case study are
visualized in Figure 8, while Figure 9 presents the allocation of the random points for “vegetated” and
“non-vegetated areas”. As expected in orthophotos with limited vegetation, such as the case study of
No. 1, the number of points characterized as “vegetation” was less than the “non-vegetation” points
(14 and 86 points, respectively).
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Figure 8. Case studies selected through the OpenAerialMap. (a) a highly urbanized area, at Taytay,
Philippines, (b) a campus at St. Petersburg, Russia, (c) a river near Arta, Greece, (d) a picnic area at
Ohio, USA, (e) an agricultural area at Nîmes, France.

Drones 2020, 4, 27 10 of 15 

 

 

Figure 8. Case studies selected through the OpenAerialMap. (a) a highly urbanized area, at Taytay, 
Philippines, (b) a campus at St. Petersburg, Russia, (c) a river near Arta, Greece, (d) a picnic area at 
Ohio, USA, (e) an agricultural area at Nîmes, France, and (f) the geographical distribution of the 
selected case studies. 

 

Figure 9. Overall distribution of the 100 random points over "vegetated" and "non-vegetated" areas 
for the five different case studies. 

The normalized difference between the mean value for each index over "vegetated areas" and 
"non-vegetated" areas is presented in Table 3. Blue color indicates the lowest normalized difference 
value, while red color, the highest value per vegetation index (V1 to V10). Overall the normalized 
difference spanned from 1.2% to 269% for all indices and case studies. For the NGRDI (Normalized 
green red difference index, V1 of Table 3), the lowest value was observed for case study no. 3, which 
visualized an area along a river near Arta, Greece. The highest values were reported for the small 
agricultural area of case study no. 5. The normalized difference of the NGRDI index for all case 
studies was between 50% to 107%. Similar observations were reported for the green leaf index (GLI) 
and Visible atmospherically resistant index (VARI) indies (V2 and V3 of Table 3, respectively). An 
analogous pattern was also reported for the red–green ratio index (IRG), red–green–blue vegetation 
index (RGBVI), modified green–red vegetation index (MGRVI), and excess green index (ExG) indices 

0 20 40 60 80 100

Case study no. 1

Case study no. 2

Case study no. 3

Case study no. 4

Case study no. 5

number of points

Vegetated areas Non vegetated areas

Figure 9. Overall distribution of the 100 random points over “vegetated” and “non-vegetated” areas
for the five different case studies.

The normalized difference between the mean value for each index over “vegetated areas” and
“non-vegetated” areas is presented in Table 3. Blue color indicates the lowest normalized difference
value, while red color, the highest value per vegetation index (V1 to V10). Overall the normalized
difference spanned from 1.2% to 269% for all indices and case studies. For the NGRDI (Normalized
green red difference index, V1 of Table 3), the lowest value was observed for case study No. 3, which
visualized an area along a river near Arta, Greece. The highest values were reported for the small
agricultural area of case study No. 5. The normalized difference of the NGRDI index for all case studies
was between 50% to 107%. Similar observations were reported for the green leaf index (GLI) and
Visible atmospherically resistant index (VARI) indies (V2 and V3 of Table 3, respectively). An analogous
pattern was also reported for the red–green ratio index (IRG), red–green–blue vegetation index (RGBVI),
modified green–red vegetation index (MGRVI), and excess green index (ExG) indices (V5, V6, V8,
and V9 of Table 3, respectively). For the triangular greenness index (TGI) (V4 of Table 3), the lowest
normalized difference was once again reported for case study No. 3, but the highest one for the urban
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areas of case study No. 1. The same area also gave the highest relatives values for the red–green ratio
index (RGRI) (V7 of Table 3). Finally, for the color index of vegetation (CIVE) (V10 of Table 3), the
lowest score was reported for case study No. 5, and the highest at the picnic area in case study No. 4.

Table 3. The normalized difference for “vegetated” and “non-vegetated” areas for all vegetation indices
(V1 to V10) mentioned in Table 2 for each case study.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Case study No. 1 82.2 99.7 56.5 269.1 72.7 94.7 32.5 81.0 94.6 64.8

Case study No. 2 78.7 86.6 83.8 83.4 2.2 54.5 1.9 115.3 89.0 21.2

Case study No. 3 49.8 57.8 42.5 52.0 23.2 50.0 14.4 42.3 28.7 20.1

Case study No. 4 80.7 88.5 81.6 100.0 72.5 87.5 29.3 78.1 90.9 80.4

Case study No. 5 107.2 144.8 98.9 67.4 97.6 163.7 1.2 107.2 132.5 2.9

In general, we can state that case study No. 3 (river area) tended to give low differences between
the vegetated and non-vegetated areas despite the vegetation index applied, indicating that this is by
far the most challenging environment to work with and to try to discriminate vegetation from the rest
areas. In contrast, high separability for all indices could be seen for case study No. 5 (agricultural area)
and case study No. 1 (urban areas).

Based on the results of Table 3, we have then relatively compared the normalized difference for all
case studies per vegetation index, setting the vegetation No. 1 (NGRDI) as a reference index. The results
of this analysis are shown in Figure 10. The normalized difference indicates the percentage difference
between (index No. i − index No. 1)/index No. 1. Therefore, the negative values in Figure 10 suggest that
the specific index provided the poorest results in comparison with the NGRDI index (vegetation No. 1).
In contrast, high values imply that the particular index gives better results compared to the NGRDI
index. Vegetation indices that are closed to zero signify that they have similar performance with the
reference index (NGRDI).Drones 2020, 4, 27 12 of 15 
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From the results of Figure 10, we can observe that the most promising index was vegetation No. 2,
namely the green leaf index (GLI), which provided better results in comparison with the NGRDI index
for all case studies. Its performance ranged from 10% to 35%. This is the only index that provided
better results for all case studies. Good performance for all case studies, with the exception of case
study No. 3 (a river near Arta, Greece), was the vegetation index No. 9 (excess green index, ExG), as it
provides a relative difference in comparison with the NGRDI index between 12% and 23% for case
studies 1 and 2, and 4 and 5. In contrast, for case study No. 3, the specific index tended to give the
worst performance (42%) in comparison with the reference index. Vegetation indices 5, 7, and 10 (IRG,
red–green ratio index; RGRI, red–green ratio index, and CIVE, color index of vegetation, respectively)
seemed not to perform better than the reference index for all case studies.

However, it is important to notice that for each case study, the optimum index varied, which is
also aligned with the previous findings of Table 3. For case study 1 (a highly urbanized area, at Taytay,
Philippines), the best index was No. 4 (TGI, triangular greenness index), for case study 2 (a campus at
St. Petersburg, Russia), the best index was vegetation No. 8 (MGRVI, modified green–red vegetation
index). For case study 3 (a river near Arta, Greece), the best index was vegetation No. 2 (GLI, green
leaf index). Finally, for the last two case studies, No. 4 and No. 5, indicating a picnic area at Ohio, USA,
and an agricultural area at Nîmes, France, respectively, the best indices were again vegetation No. 4
(TGI, triangular greenness index) and vegetation No. 6 (RGBVI, red–green–blue vegetation index).

4. Discussion

The results presented in the previous section, provide some very helpful information regarding
the extraction of vegetation in visible orthophotos, in various environments. It was shown that the
application of vegetation indices based on visible bands could highlight vegetated areas and, therefore,
enhance healthy vegetation. Indeed, the results presented in Figures 5 and 6 indicate that several
indices could perform a high separability between vegetated and non-vegetated areas, while from
the findings of Table 3, itis demonstrated that for each case study there was a unique index that
could highlight these two different areas, with a relative difference ranging from 57% up to 269%.
The differences between the vegetated and non-vegetated areas were also found to be statistically
significant for all case studies, after the application of a t-test with a 95% confidence level.

While this is true, the context of some orthophotos can also be characterized as quite challenging as
the case study No. 3. The results from the application of all indices are shown in Figure 7, which shows
that the detection of vegetated areas could also have several false positives within the river basin.

Beyond the spectral complexity and heterogeneity of the orthophoto, some other factors,
not discussed in the paper, can also influence the overall performance of the indices. Initially,
the spectral response filters of each camera used for these orthophotos were different. Differences in the
sensitivity of the cameras to capture in specific wavelengths the backscattered reflectance values can be
significant, as was demonstrated in the past from other studies [30]. In addition, the resolution of the
orthophoto was not always optimum for each case study. Recent studies [31,32] have shown that the
optimum resolution for remote sensing applications is connected not only to the spatial characteristics
of the targets under investigation but also with their spectral properties. Finally, assumptions made
during the radiometric calibration of the orthophotos need to be taken into consideration. At the
same time, a pre-flight plan with special targets and spectroradiometric campaigns can minimize
these errors.

5. Conclusions

Vegetation extraction has attracted the interest of researchers all around the world due to
its importance of monitoring agricultural areas, forests, etc. While their detection is based on the
exploitation of the near-infrared part of the spectrum, the tremendous increase in low altitude platforms,
such as the UAVs, equipped with only visible cameras, has made this task quite challenging.
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In this paper, we explored openly licensed unmanned aerial vehicle (UAV) imagery from the
OpenAerialMap platform, selecting five different case studies, with different contexts and UAV sensors.
Since these products were downloaded “as is”, it was necessary to apply a radiometric correction
before any further processing. For this reason, the EML image-based technique was applied for some
case studies (namely case studies Nos. 1, 2, and 4), while for the rest of the case studies (Nos. 3 and
5), normalization of the orthophotos based on image statistics was applied. This procedure does
not require any knowledge of either ground targets or field campaigns with spectroradiometers and
spectral reflectance targets, which could not be performed in this study (i.e., after the UAV flight).
Once the radiometric calibration was applied and verified using spectral signatures profiles of targets
on the UAVs, then various visible vegetation indices were applied to all case studies. The results
were further elaborated to examine the performance of each index. From the findings of this study,
two aspects can be highlighted:

• Finding 1: The best vegetation index for all case studies was the green leaf index (GLI), which
explores all visible bands of the RGB cameras. The specific index was able to provide better results
robustly in all different environments. However:

• Finding 2: The performance of each index varied per case study as expected. Therefore, for each
different orthophoto, there was a visible index that highlights better the vegetated areas.

The findings of this study can be applied in any RGB orthophoto, taken either from a low altitude
system or even aerial images. Given the wide application of ready-to-fly (RTF) drones with a cost of
approximatively less than 2000 euros, RGB cameras will continue to play an important role in the
near future for small survey campaigns. While field campaigns and particular targets are necessary
to calibrate the reflectance of the images, if these are, for any reason, absent, then a similar approach
presented here can be followed. In the future, specialized vegetation indices can be developed for
addressing specific needs, thus making the extraction of vegetation an easier and more straightforward
procedure. Given the various phenological growth stages of vegetation, a dynamic threshold method
can be investigated in the future for specific types of vegetation (e.g., crops) towards the automatic
extraction of vegetation from RGB orthophotos. These vegetation-specific optimum thresholds could
eventually be use to mask or extract the vegetated areas. Finally, a different approach for the extraction
of vegetation based on supervised classification analysis can be performed in the future.
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