Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1854
DC FieldValueLanguage
dc.contributor.authorHadjimitsis, Diofantos G.-
dc.contributor.authorEvangelou, I.-
dc.contributor.authorRetalis, Adrianos-
dc.contributor.authorLazakidou, A.-
dc.contributor.authorClayton, Chris R I-
dc.date.accessioned2012-10-24T10:21:04Zen
dc.date.accessioned2013-05-17T05:21:57Z-
dc.date.accessioned2015-12-02T09:50:19Z-
dc.date.available2012-10-24T10:21:04Zen
dc.date.available2013-05-17T05:21:57Z-
dc.date.available2015-12-02T09:50:19Z-
dc.date.issued2005-11-
dc.identifier.citationWSEAS Transactions on Signal Processing, 2005, vol. 1, no. 2, pp. 155-162en_US
dc.identifier.issn22243488-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1854-
dc.description.abstractThis paper presents a method for classifying Landsat Satellite Images. This method is based on the Self-Organizing Map (SOM), which is an unsupervised artificial neural network algorithm. The occurrence of fires on the island of Skiathos in Greece is considered as an example for investigating the possible impact of fires on Land-Cover changes. Classification is performed on three Landsat-5 TM satellite images of areas of the island, acquired in 1988, 1999 and 2000. Land-cover changes and areas affected by the fires are identified after the classification has been performed on the images. In order to assess the proposed SOM Artificial Neural network algorithm, the same images have been classified using conventional classification methods and their results are compared with the ones of the SOM.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofWSEAS Transactions on Signal Processingen_US
dc.rights© Wseasen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectNeural networksen_US
dc.subjectRemote-sensing imagesen_US
dc.subjectSelf-organizing mapsen_US
dc.titleClassification of satellite images for land-cover changes using an unsupervised neural network algorithmen_US
dc.typeArticleen_US
dc.affiliationFrederick Institute of Technologyen
dc.collaborationFrederick Institute of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.dept.handle123456789/54en
dc.relation.issue2en_US
dc.relation.volume1en_US
cut.common.academicyear2005-2006en_US
dc.identifier.spage155en_US
dc.identifier.epage162en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn2224-3488-
crisitem.journal.publisherWorld Scientific and Engineering Academy and Society-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-2684-547X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 50

376
Last Week
1
Last month
2
checked on Dec 22, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons