Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/18537
Τίτλος: | Plug-in L2-upper error bounds in deconvolution, for a mixing density estimate in Rd and for its derivatives, via the L1-error for the mixture |
Συγγραφείς: | Yatracos, Yannis G. |
Major Field of Science: | Natural Sciences |
Field Category: | Mathematics |
Λέξεις-κλειδιά: | Deconvolution;Minimum distance estimation;Plug-in upper error/risk bounds;Totally positive kernels;Vapnik–Chervonenkis classes |
Ημερομηνία Έκδοσης: | 30-Ιου-2019 |
Πηγή: | Statistics, 2019, vol. 53, no. 6, pp. 1251-1268 |
Volume: | 53 |
Issue: | 6 |
Start page: | 1251 |
End page: | 1268 |
Περιοδικό: | Statistics |
Περίληψη: | In deconvolution in Rd, d≥1, with mixing density p(∈P) and kernel h, the mixture density fp(∈Fp) is estimated with MDE fpˆn, having upper L1-error rate, an, in probability or in risk; pˆn∈P. In one application, P consists of L1-separable densities in R with differences changing sign at most J times and h(x−y) Totally Positive. When h is known and p is q˜-smooth, vanishing outside a compact in Rd, plug-in upper bounds are provided for the L2-error rate of pˆn and its [s]-th mixed partial derivative pˆ(s)n, via ∥∥fpˆn−fp∥∥1, with rates (loga−1n)−N1 and aN2n, respectively, for h super-smooth and smooth; q˜∈R+,[s]≤q˜,d≥1, N1>0, N2>0. For an∼(logn)ζ⋅n−δ, the former rate is optimal for any δ>0 and the latter misses the optimal by the factor (logn)ξ when δ=.5; ζ>0,ξ>0. N1 and N2 appear in optimal rates and lower error and risk bounds in the deconvolution literature. |
URI: | https://hdl.handle.net/20.500.14279/18537 |
ISSN: | 10294910 |
DOI: | 10.1080/02331888.2019.1632313 |
Rights: | © Taylor & Francis Attribution-NonCommercial-NoDerivs 3.0 United States |
Type: | Article |
Affiliation: | Tsinghua University Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons