Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18523
DC FieldValueLanguage
dc.contributor.authorPasias, Dimitris-
dc.contributor.authorPassos, Andreas-
dc.contributor.authorConstantinides, Georgios-
dc.contributor.authorBalabani, Stavroula-
dc.contributor.authorKaliviotis, Efstathios-
dc.date.accessioned2020-07-21T06:01:30Z-
dc.date.available2020-07-21T06:01:30Z-
dc.date.issued2020-07-09-
dc.identifier.citationPhysics of Fluids, 2020, vol. 32, no. 7, articl. no. 071903en_US
dc.identifier.issn10897666-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/18523-
dc.description.abstractMicrofluidic platforms have increasingly been explored for in vitro blood diagnostics and for studying complex microvascular processes. The perfusion of blood in such devices is typically achieved through pressure-driven setups. Surface tension driven blood flow provides an alternative flow delivery option, and various studies in the literature have examined the behavior of blood flow in such fluidic devices. In such flows, the influence of red blood cell (RBC) aggregation, the phenomenon majorly responsible for the non-Newtonian nature of blood, requires particular attention. In the present work, we examine differences in the surface tension driven flow of aggregating and non-aggregating RBC and Newtonian suspensions, in a rectangular microchannel. The velocity fields were obtained using micro-PIV techniques. The analytical solution for blood velocity in the channel is developed utilizing the power law model for blood viscosity. The results showed that RBC aggregation has an impact at the late stages of the flow, observed mainly in the bluntness of the velocity profiles. At the initial stages of the flow, the shearing conditions are found moderately elevated, preventing intense RBC aggregate formation. As the flow decelerates in the channel, RBC aggregation increases, affecting the flow characteristics.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPhysics of Fluidsen_US
dc.rights© Author(s).en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectErythrocyte aggregationen_US
dc.subjectMicrochannelen_US
dc.subjectLaplace pressureen_US
dc.subjectFlow visualizationen_US
dc.subjectVelocimetryen_US
dc.subjectBlood cellsen_US
dc.subjectNon Newtonian fluidsen_US
dc.subjectHaemodynamicsen_US
dc.subjectRheological propertiesen_US
dc.subjectCapillary flowsen_US
dc.titleSurface tension driven flow of blood in a rectangular microfluidic channel: Effect of erythrocyte aggregationen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity College Londonen_US
dc.subject.categoryMechanical Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1063/5.0008939en_US
dc.relation.issue7en_US
dc.relation.volume32en_US
cut.common.academicyear2020-2021en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1089-7666-
crisitem.journal.publisherAmerican Institute of Physics-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1979-5176-
crisitem.author.orcid0000-0003-4149-4396-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
Kaliviotis Efstathios.pdfOpen Access4.94 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

16
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

392
Last Week
1
Last month
32
checked on Mar 14, 2025

Download(s)

463
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons