Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/18502
DC FieldValueLanguage
dc.contributor.authorXu, Dong-
dc.contributor.authorKaliviotis, Efstathios-
dc.contributor.authorMunjiza, Ante-
dc.contributor.authorAvital, Eldad Jitzhak-
dc.contributor.authorJi, Chunning-
dc.contributor.authorWilliams, John J.R.-
dc.date.accessioned2020-07-20T09:18:25Z-
dc.date.available2020-07-20T09:18:25Z-
dc.date.issued2013-07-26-
dc.identifier.citationJournal of Biomechanics, vol. 46, iss. 11, 2013, pp. 1810-1817en_US
dc.identifier.issn00219290-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/18502-
dc.description.abstractAggregation of highly deformable red blood cells (RBCs) significantly affects the blood flow in the human circulatory system. To investigate the effect of deformation and aggregation of RBCs in blood flow, a mathematical model has been established by coupling the interaction between the fluid and the deformable solids. The model includes a three-dimensional finite volume method solver for incompressible viscous flows, the combined finite-discrete element method for computing the deformation of the RBCs, a JKR model-Johnson, Kendall and Roberts (1964-1971) (Johnson et al., 1971) to take account of the adhesion forces between different RBCs and an iterative direct-forcing immersed boundary method to couple the fluid-solid interactions. The flow of 49,512 RBCs at 45% concentration under the influence of aggregating forces was examined, improving the existing knowledge on simulating flow and structural characteristics of blood at a large scale: previous studies on the particular issue were restricted to simulating the flow of 13,000 aggregative ellipsoidal particles at a 10% concentration. The results are in excellent agreement with experimental studies. More specifically, both the experimental and the simulation results show uniform RBC distributions under high shear rates (60-100/s) whereas large aggregation structures were observed under a lower shear rate of 10/s. The statistical analysis of the simulation data also shows that the shear rate has significant influence on both the flow velocity profiles and the frequency distribution of the RBC orientation angles.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Biomechanicsen_US
dc.rights© Elsevieren_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectRed blood cellsen_US
dc.subjectAdhesionen_US
dc.subjectAggregationen_US
dc.subjectImmersed boundary methoden_US
dc.subjectNumerical simulationen_US
dc.titleLarge scale simulation of red blood cell aggregation in shear flowsen_US
dc.typeArticleen_US
dc.collaborationTianjin Universityen_US
dc.collaborationKing's College Londonen_US
dc.collaborationUniversity of Londonen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryChinaen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.jbiomech.2013.05.010en_US
dc.identifier.pmid23809770-
dc.identifier.scopus2-s2.0-84880037956-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84880037956-
dc.relation.issue11en_US
dc.relation.volume46en_US
cut.common.academicyear2013-2014en_US
dc.identifier.spage1810en_US
dc.identifier.epage1817en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.journal.journalissn0021-9290-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4149-4396-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

67
checked on Feb 1, 2024

WEB OF SCIENCETM
Citations

61
Last Week
0
Last month
2
checked on Oct 29, 2023

Page view(s)

303
Last Week
0
Last month
3
checked on Feb 3, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons