Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/18393
Τίτλος: | Extracting Traffic Safety Knowledge from Historical Accident Data | Συγγραφείς: | Gregoriades, Andreas Chrystodoulides, Andreas |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Self-Organizing-Maps;Traffic Accidents Heat-maps;Accident Warnings | Ημερομηνία Έκδοσης: | 15-Ιαν-2018 | Πηγή: | 14th International Conference on Location Based Services (LBS 2018), Zurich, Switzerland, January 15-17, 2018 | Start page: | 109 | End page: | 114 | Conference: | International Conference on Location Based Services | Περίληψη: | This paper presents a method and a tool for analyzing historical traffic accident records using data mining techniques for the extraction of valuable knowledge for traffic safety management. The knowledge is dis-tilled using spatio-temporal analysis of historical accidents records. Raw accident data, obtained from Police records, underwent pre-processing and subsequently integrated with secondary traffic-flow data from a mesoscopic simulation. Clustering analysis was performed with self-organizing maps (SOM) to identify accident black spots on the road network and visualizethis on a map. Distilled knowledge is used to develop a prototype mobile application to warn drivers of accident risk in real time | URI: | https://hdl.handle.net/20.500.14279/18393 | DOI: | 10.3929/ethz-b-000225600 | Rights: | ETH Zurich | Type: | Conference Papers | Affiliation: | Cyprus University of Technology European University Cyprus |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα