Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18393
Τίτλος: Extracting Traffic Safety Knowledge from Historical Accident Data
Συγγραφείς: Gregoriades, Andreas 
Chrystodoulides, Andreas 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Self-Organizing-Maps;Traffic Accidents Heat-maps;Accident Warnings
Ημερομηνία Έκδοσης: 15-Ιαν-2018
Πηγή: 14th International Conference on Location Based Services (LBS 2018), Zurich, Switzerland, January 15-17, 2018
Start page: 109
End page: 114
Conference: International Conference on Location Based Services 
Περίληψη: This paper presents a method and a tool for analyzing historical traffic accident records using data mining techniques for the extraction of valuable knowledge for traffic safety management. The knowledge is dis-tilled using spatio-temporal analysis of historical accidents records. Raw accident data, obtained from Police records, underwent pre-processing and subsequently integrated with secondary traffic-flow data from a mesoscopic simulation. Clustering analysis was performed with self-organizing maps (SOM) to identify accident black spots on the road network and visualizethis on a map. Distilled knowledge is used to develop a prototype mobile application to warn drivers of accident risk in real time
URI: https://hdl.handle.net/20.500.14279/18393
DOI: 10.3929/ethz-b-000225600
Rights: ETH Zurich
Type: Conference Papers
Affiliation: Cyprus University of Technology 
European University Cyprus 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 50

320
Last Week
0
Last month
0
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα