Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/18392
Τίτλος: | Mining traffic accident data for hazard causality analysis | Συγγραφείς: | Tasios, Dimitrios Tjortjis, Christos Gregoriades, Andreas |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Classification;Artificial Intelligence and Applications;Data mining;Traffic accidents | Ημερομηνία Έκδοσης: | 1-Σεπ-2019 | Πηγή: | 4th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference, SEEDA-CECNSM 2019 | Conference: | South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM) | Περίληψη: | Over 1.25 million people are killed, and 20-50 million people are seriously injured by traffic accidents every year globally, according to the World Bank. This paper aims to identify patterns in traffic accident data, collected by Cyprus Police between 2007 and 2014. The dataset that was used includes information regarding 3 groups of accident properties: human, vehicle and general environmental or infrastructural information. Data mining techniques were used, and several patterns were identified. Five classifiers were evaluated using a preprocessed dataset, to extract accident patterns. Preliminary results indicate some of the main issues with regards to accident causalities in Cyprus that could be used for real time accident warnings. | URI: | https://hdl.handle.net/20.500.14279/18392 | ISBN: | 9781728147574 | DOI: | 10.1109/SEEDA-CECNSM.2019.8908346 | Rights: | © IEEE | Type: | Conference Papers | Affiliation: | Cyprus University of Technology International Hellenic University |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
3
checked on 14 Μαρ 2024
Page view(s) 50
367
Last Week
6
6
Last month
10
10
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα