Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/18258
DC FieldValueLanguage
dc.contributor.authorKeivanidis, Panagiotis E.-
dc.contributor.authorKamm, Valentin-
dc.contributor.authorZhang, Weimin-
dc.contributor.authorFloudas, George A.-
dc.contributor.authorLaquai, Frédéric-
dc.contributor.authorMcCulloch, Iain-
dc.contributor.authorBradley, Donal D.C.-
dc.contributor.authorNelson, Jenny-
dc.date.accessioned2020-04-10T18:36:26Z-
dc.date.available2020-04-10T18:36:26Z-
dc.date.issued2012-03-15-
dc.identifier.citationAdvanced Functional Materials, 2012, vol. 22, no.11, pp. 2318-2326en_US
dc.identifier.issn1616301X-
dc.description.abstractEvidence for a correlation between the dynamics of emissive non-geminate charge recombination within organic photovoltaic (OPV) blend films and the photocurrent generation efficiency of the corresponding blend-based solar cells is presented. Two model OPV systems that consist of binary blends of electron acceptor N'-bis(1-ethylpropyl)-3,4,9,10-perylene tetracarboxy diimide (PDI) with either poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) or poly(9,9-dioctylindenofluorene-co-benzothiadiazole) (PIF8BT) as electron donor are studied. For the F8BT:PDI and PIF8BT:PDI devices photocurrent generation efficiency is shown to be related to the PDI crystallinity. In contrast to the F8BT:PDI system, thermal annealing of the PIF8BT:PDI layer at 90 °C has a positive impact on the photocurrent generation efficiency and yields a corresponding increase in PL quenching. The devices of both blends have a strongly reduced photocurrent on higher temperature annealing at 120 °C. Delayed luminescence spectroscopy suggests that the improved efficiency of photocurrent generation for the 90 °C annealed PIF8BT:PDI layer is a result of optimized transport of the photogenerated charge-carriers as well as of enhanced PL quenching due to the maintenance of optimized polymer/PDI interfaces. The studies propose that charge transport in the blend films can be indirectly monitored from the recombination dynamics of free carriers that cause the delayed luminescence. For the F8BT:PDI and PIF8BT:PDI blend films these dynamics are best described by a power-law decay function and are found to be temperature dependent.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced Functional Materialsen_US
dc.rights© 2012 WILEYen_US
dc.subjectLuminescenceen_US
dc.subjectMicrostructuresen_US
dc.subjectNon-geminate recombinationen_US
dc.subjectOrganic photovoltaics (OPVs)en_US
dc.subjectPerylene diimidesen_US
dc.subjectTransporten_US
dc.titleCorrelating Emissive Non‐Geminate Charge Recombination with Photocurrent Generation Efficiency in Polymer/Perylene Diimide Organic Photovoltaic Blend Filmsen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.collaborationMax Planck Instituteen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryGermanyen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1002/adfm.201102871en_US
dc.identifier.scopus2-s2.0-84861808805-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84861808805-
dc.relation.issue11en_US
dc.relation.volume22en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage2318en_US
dc.identifier.epage2326en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-5336-249X-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1616-3028-
crisitem.journal.publisherWiley-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

29
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

363
Last Week
2
Last month
4
checked on Jan 28, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.