Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/18244
DC FieldValueLanguage
dc.contributor.authorKeivanidis, Panagiotis E.-
dc.contributor.authorClarke, Tracey M.-
dc.contributor.authorLilliu, Samuele-
dc.contributor.authorAgostinelli, Tiziano-
dc.contributor.authorMacDonald, J. Emyr-
dc.contributor.authorDurrant, James R.-
dc.contributor.authorBradley, Donal D.C.-
dc.contributor.authorNelson, Jenny-
dc.date.accessioned2020-04-09T19:27:20Z-
dc.date.available2020-04-09T19:27:20Z-
dc.date.issued2010-02-18-
dc.identifier.citationThe Journal of Physical Chemistry Letters, 2010, vol. 1, iss. 4, pp. 734-738en_US
dc.identifier.issn19487185-
dc.description.abstractHerein we address the factors controlling photocurrent generation in P3HT:PCBM blend films as a function of blend composition and annealing treatment. Absorption, photoluminescence, and transient absorption spectroscopy are used to distinguish the role of exciton dissociation, charge pair separation, and charge collection. Variations in blend film microstructure with composition and annealing treatment are studied using X-ray diffraction. While the trend in photocurrent generation with composition and annealing [Muller, et al., Adv. Mater. 2008, 20, 3510] does not follow the trend in exciton dissociation, it closely follows the trend in charge pair generation. Moreover, charge pair generation efficiency is positively correlated to the degree of polymer crystallization and the appearance of large domains of both polymer and fullerene phases. We argue that larger domains assist charge pair separation by increasing the probability of escape from the P3HT:PCBM interface, thus reducing geminate charge recombination. © 2010 American Chemical Society.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofThe Journal of Physical Chemistry Lettersen_US
dc.rights© American Chemical Societyen_US
dc.subjectKineticsen_US
dc.subjectSpectroscopyen_US
dc.titleDependence of charge separation efficiency on film microstructure in Poly(3-hexylthiophene-2,5-diyl): [6,6]-phenyl-C61 butyric acid methyl ester blend filmsen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.collaborationCardiff Universityen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1021/jz900296fen_US
dc.identifier.scopus2-s2.0-77749273766-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77749273766-
dc.relation.issue4en_US
dc.relation.volume1en_US
cut.common.academicyear2009-2010en_US
dc.identifier.spage734en_US
dc.identifier.epage738en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn1948-7185-
crisitem.journal.publisherAmerican Chemical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-5336-249X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

105
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

98
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

267
Last Week
3
Last month
13
checked on May 12, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.