Please use this identifier to cite or link to this item:
Title: Intermolecular interactions of perylene diimides in photovoltaic blends of fluorene copolymers: Disorder effects on photophysical properties, film morphology and device efficiency
Authors: Keivanidis, Panagiotis E. 
Howard, Ian A. 
Friend, Richard H. 
Major Field of Science: Engineering and Technology
Field Category: Mechanical Engineering
Keywords: Polymer blends;Photovoltaic devices;Films;Copolymers
Issue Date: 23-Oct-2008
Source: Advanced Functional Materials, 2008, vol. 18, iss. 20, pp. 3189-3202
Volume: 18
Issue: 20
Start page: 3189
End page: 3202
Journal: Advanced Functional Materials 
Abstract: In the present work, we correlate the photophysical and photovoltaic properties with the respective film morphologies of three different blends made of the fluorene copolymers poly(9,9′-dioctylfluorene-co-benzothiadiazole) (F8BT), poly[9,9′-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine] (TFB), and poly[9,9′-dioctyfluorene-co-bis-N,N′-(4-butylphenyl)-bis- N,N-phenyl-1,4-phenylenediamine] (PFB) when blended with a perylene tetracarboxylic diimide (PDI) derivative. Additional photophysical studies in reference PDI blends of the electronically inert poly(styrene) matrix address the enhanced PDI intermolecular solidstate interactions. We resolve the process of resonance energy transfer from excited polymer hosts to PDI and the process of photoinduced hole transfer from PDI to the polymer hosts. We deduce the efficiency of charge-transfer PDI photoluminescence (PL) quenching and we discuss the power-law PL kinetics seen in the as-spun systems. Next we determine the dependence of the device external quantum efficiency (EQE) of these blends, in a range of annealing temperatures and PDI loadings. Differential scanning calorimetry enables precise selection of annealing temperatures. Optical microscopy shows that annealing enhances the order characteristics in the PDI aggregates in the F8BT:PDI system. In the case of the TFB:PDI and PFB.-PDI blends, AFM studies suggest the formation of PDI-rich domains on the film/air interface. The degree of order in the π-π stacking of the PDI monomers is inferred by the UV-Vis and PL spectra of the blends. The extent of order characteristics in PDI aggregates is correlated with the thermal properties of the hosts that control PDI molecular mobility upon annealing. The efficient dispersion of disrupted PDI crystallites is proposed to form appropriate percolation networks that favor balanced extraction of photogenerated carriers. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
ISSN: 1616-301X
DOI: 10.1002/adfm.200800356
Rights: © Wiley
Type: Article
Affiliation : Cavendish Laboratory 
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Citations 50

checked on Nov 6, 2023


Last Week
Last month
checked on Oct 29, 2023

Page view(s) 50

Last Week
Last month
checked on Dec 7, 2023

Google ScholarTM



Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.