Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18149
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorKalogirou, Soteris A.-
dc.contributor.authorNeocleous, Costas-
dc.contributor.authorSchizas, Christos N.-
dc.date.accessioned2020-03-26T06:14:33Z-
dc.date.available2020-03-26T06:14:33Z-
dc.date.issued1997-06-
dc.identifier.citationInternational Conference on Engineering Applications of Neural Networks, 1997, 16-18 June, Stockholm, Swedenen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/18149-
dc.description.abstractThe parabolic trough collector (PTC) is the most preferred type of solar collecting system employed for steam generation. This is due to the fact that the collector can work with high efficiencies at high temperature. Such a system consists of a PTC, a flash vessel and an associated circulation and control system. The amount of steam produced depends on the solar radiation available, ambient air temperature, collector area, total system water capacity, and the diameter and height of the flash vessel. Data for a number of cases were used to train an artificial neural network in order to generate a mapping between the above easily measurable inputs and the desired output system performance. The collectors used had areas varying from 3.5 m2 to 2160 m2. Different neural architectures have been used in order to find the one with the best possible performance. The multilayer feedforward architecture using the standard backpropagation learning algorithm have been the most successful so far. Many other architectures are still under investigation. The results obtained for the training set are such that they yield a statistical R2 = 0.999. The network was used subsequently for predictions of the performance of cases other than the ones used for training, both within and outside the above range. Typical value of the accuracy obtained was 95% (at an R2 = 0.999). This is considered as acceptable for such estimationsen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.subjectArtificial neural networksen_US
dc.subjectParabolicen_US
dc.subjectSteam generation systemen_US
dc.titleArtificial Neural Networks for the Estimation of the Performance of a Parabolic Trough Collector Steam Generation Systemen_US
dc.typeConference Papersen_US
dc.linkhttp://users.abo.fi/abulsari/EANN97.htmlen_US
dc.collaborationHigher Technical Institute Cyprusen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Engineering Applications of Neural Networksen_US
cut.common.academicyear1996-1997en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s) 50

316
Last Week
0
Last month
8
checked on 21 Νοε 2024

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα