Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/18091
DC FieldValueLanguage
dc.contributor.authorMarkovic, Uros-
dc.contributor.authorChu, Zhongda-
dc.contributor.authorAristidou, Petros-
dc.contributor.authorHug, Gabriela-
dc.date.accessioned2020-03-16T18:44:05Z-
dc.date.available2020-03-16T18:44:05Z-
dc.date.issued2019-07-01-
dc.identifier.citationIEEE Transactions on Sustainable Energy, 2019, vol.10, no. 3, pp. 1501-1512en_US
dc.identifier.issn19493029-
dc.description.abstractThis paper presents a novel virtual synchronous machine controller for converters in power systems with a high share of renewable resources. Using a linear quadratic regulator-based optimization technique, the optimal state feedback gain is determined to adaptively adjust the emulated inertia and damping constants according to the frequency disturbance in the system, while simultaneously preserving a tradeoff between the critical frequency limits and the required control effort. Two control designs are presented and compared against the open-loop model. The proposed controllers are integrated into a state-of-the-art converter control scheme and verified through electromagnetic transient (EMT) simulations.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Sustainable Energyen_US
dc.rightsIEEEen_US
dc.subjectSwing equationen_US
dc.subjectAdaptive controlen_US
dc.subjectLinear-quadratic regulator (LQR)en_US
dc.subjectVirtual synchronous machine (VSM)en_US
dc.subjectVoltage source converter (VSC)en_US
dc.titleLQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetrationen_US
dc.typeArticleen_US
dc.collaborationETH Zurichen_US
dc.collaborationLeeds Universityen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countrySwitzerlanden_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TSTE.2018.2887147en_US
dc.identifier.scopus2-s2.0-85058872566-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85058872566-
dc.relation.issue3en_US
dc.relation.volume10en_US
cut.common.academicyear2018-2019en_US
dc.identifier.spage1501en_US
dc.identifier.epage1512en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4429-0225-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1949-3037-
crisitem.journal.publisherIEEE-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
manuscript.pdf4.53 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

128
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

82
Last Week
1
Last month
1
checked on Oct 29, 2023

Page view(s)

298
Last Week
0
Last month
8
checked on Jun 23, 2024

Download(s)

67
checked on Jun 23, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.