Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18056
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorKleanthous, Christos-
dc.contributor.authorChatzis, Sotirios P.-
dc.date.accessioned2020-03-12T10:28:40Z-
dc.date.available2020-03-12T10:28:40Z-
dc.date.issued2020-01-05-
dc.identifier.citationKnowledge-Based Systems, 2020, vol. 188, articl. no. 105048en_US
dc.identifier.issn09507051-
dc.description.abstractIn this work, we address the problem of targeted Value Added Tax (VAT) audit case selection by means of machine learning. This is a challenging problem that has remained rather elusive for EU-based Tax Departments, due to the inadequate quantity of tax audits that can be used for conventional supervised model training. To this end, we devise a novel Gated Mixture Variational Autoencoder deep network, that can be effectively trained with data from a limited number of audited taxpayers, combined with a large corpus of filed VAT returns. This gives rise to a semi-supervised learning framework that leverages the latest advances in deep learning and robust regularization using variational inference. We developed our approach in collaboration with the Cyprus Tax Department and experimentally deployed it to facilitate its audit selection process; to this end, we used actual VAT data from Cyprus-based taxpayers. This way, we obtained strong empirical evidence that our approach can greatly facilitate the VAT audit case selection process. Specifically, we obtained up to 76% out-of-sample accuracy in detecting whether a significant tax yield will be generated from a specific prospective VAT audit.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofKnowledge-Based Systemsen_US
dc.rights© Elsevieren_US
dc.subjectValue Added Taxen_US
dc.subjectAudit selectionen_US
dc.subjectVariational autoencoderen_US
dc.subjectFinite mixture modelen_US
dc.titleGated Mixture Variational Autoencoders for Value Added Tax audit case selectionen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationCyprus Tax Departmenten_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.knosys.2019.105048en_US
dc.identifier.scopus2-s2.0-85072601351-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85072601351-
dc.relation.volume188en_US
cut.common.academicyear2020-2021en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0950-7051-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

12
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

402
Last Week
0
Last month
27
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα