Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/17956
DC FieldValueLanguage
dc.contributor.authorKalogirou, Soteris A.-
dc.date.accessioned2020-03-04T08:05:48Z-
dc.date.available2020-03-04T08:05:48Z-
dc.date.issued2006-07-
dc.identifier.citationInternational Journal of Low Carbon Technologies, 2006, vol. 1, no. 3, pp. 201–216en_US
dc.identifier.issn17481317-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/17956-
dc.description.abstractArtificial neural networks (ANNs) are nowadays accepted as an alternative technology offering a way to tackle complex and ill-defined problems. They are not programmed in the traditional way but they are trained using past history data representing the behaviour of a system. They have been used in a number of diverse applications. Results presented in this paper are testimony to the potential of artificial neural networks as a design tool in many areas of building services engineering.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Low Carbon Technologiesen_US
dc.rights© Manchester University Press 2006en_US
dc.subjectArtificial neural networksen_US
dc.subjectEnergy predictionen_US
dc.subjectBuilding applicationsen_US
dc.titleArtificial neural networks in energy applications in buildingsen_US
dc.typeArticleen_US
dc.collaborationHigher Technical Institute Cyprusen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1093/ijlct/1.3.201en_US
dc.relation.issue3en_US
dc.relation.volume1en_US
cut.common.academicyear2005-2006en_US
dc.identifier.spage201en_US
dc.identifier.epage216en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.journal.journalissn1748-1325-
crisitem.journal.publisherOxford University Press-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
1-3-201.pdfFulltext224.47 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

301
Last Week
11
Last month
2
checked on Nov 23, 2024

Download(s) 50

93
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.