Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1775
DC FieldValueLanguage
dc.contributor.authorBolis, Dimitris-
dc.contributor.authorTefas, Anastasios-
dc.contributor.authorPitas, Ioannis K.-
dc.contributor.authorMaronidis, Anastasios-
dc.date.accessioned2013-02-18T13:46:33Zen
dc.date.accessioned2013-05-16T13:11:27Z-
dc.date.accessioned2015-12-02T09:45:14Z-
dc.date.available2013-02-18T13:46:33Zen
dc.date.available2013-05-16T13:11:27Z-
dc.date.available2015-12-02T09:45:14Z-
dc.date.issued2011-10-
dc.identifier.citationNeural Networks, 2011, vol. 24, no. 8, pp. 814–823en_US
dc.identifier.issn18792782-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1775-
dc.description.abstractIn this paper, the robustness of appearance-based subspace learning techniques in geometrical transformations of the images is explored. A number of such techniques are presented and tested using four facial expression databases. A strong correlation between the recognition accuracy and the image registration error has been observed. Although it is common-knowledge that appearance-based methods are sensitive to image registration errors, there is no systematic experiment reported in the literature. As a result of these experiments, the training set enrichment with translated, scaled and rotated images is proposed for confronting the low robustness of these techniques in facial expression recognition. Moreover, person dependent training is proven to be much more accurate for facial expression recognition than generic learning.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNeural Networksen_US
dc.rights© Elsevieren_US
dc.subjectFacial expression recognitionen_US
dc.subjectAppearance based techniquesen_US
dc.subjectSubspace learning methodsen_US
dc.titleImproving subspace learning for facial expression recognition using person dependent and geometrically enriched training setsen_US
dc.typeArticleen_US
dc.affiliationAristotle University of Thessalonikien
dc.collaborationAristotle University of Thessalonikien_US
dc.subject.categoryArtsen_US
dc.subject.categoryOther Humanitiesen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldHumanitiesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.neunet.2011.05.015en_US
dc.dept.handle123456789/54en
dc.relation.issue8en_US
dc.relation.volume24en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage814en_US
dc.identifier.epage823en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0893-6080-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-9656-8685-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

29
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

28
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

478
Last Week
0
Last month
2
checked on Dec 23, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.