Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1766
DC FieldValueLanguage
dc.contributor.authorCharalampidis, Dimitrios-
dc.contributor.authorGeorgiopoulos, Michael N.-
dc.contributor.authorKasparis, Takis-
dc.contributor.otherΚασπαρής, Τάκης-
dc.date.accessioned2013-02-15T14:21:03Zen
dc.date.accessioned2013-05-17T05:22:07Z-
dc.date.accessioned2015-12-02T09:55:06Z-
dc.date.available2013-02-15T14:21:03Zen
dc.date.available2013-05-17T05:22:07Z-
dc.date.available2015-12-02T09:55:06Z-
dc.date.issued2001-10-
dc.identifier.citationPattern Recognition, 2001, vol. 34, no. 10, pp. 1963-1973en_US
dc.identifier.issn00313203-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1766-
dc.description.abstractThis paper describes a new approach to the segmentation of textured gray-scale images based on image pre-filtering and fractal features. Traditionally, filter bank decomposition methods consider the energy in each band as the textural feature, a parameter that is highly dependent on image intensity. In this paper, we use fractal-based features which depend more on textural characteristics and not intensity information. To reduce the total number of features used in the segmentation, the significance of each feature is examined using a test similar to the F-test, and less significant features are not used in the clustering process. The commonly used K-means algorithm is extended to an iterative K-means by using a variable window size that preserves boundary details. The number of clusters is estimated using an improved hierarchical approach that ignores information extracted around region boundaries.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPattern recognitionen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectImage processingen_US
dc.subjectImage analysisen_US
dc.subjectPattern recognitionen_US
dc.subjectFilters and filtrationen_US
dc.titleSegmentation of textured images based on fractals and image filteringen_US
dc.typeArticleen_US
dc.collaborationUniversity of Central Floridaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/S0031-3203(00)00126-6en_US
dc.dept.handle123456789/54en
dc.relation.issue10en_US
dc.relation.volume34en_US
cut.common.academicyear2019-2020en_US
dc.identifier.spage1963en_US
dc.identifier.epage1973en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0031-3203-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 10

46
checked on Nov 8, 2023

WEB OF SCIENCETM
Citations

37
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

439
Last Week
2
Last month
4
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons