Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1763
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kalogirou, Soteris A. | - |
dc.contributor.author | Eftekhari, Mahroo | - |
dc.contributor.author | Marjanovic, Ljiljana | - |
dc.date.accessioned | 2009-05-27T10:43:28Z | en |
dc.date.accessioned | 2013-05-17T05:22:34Z | - |
dc.date.accessioned | 2015-12-02T09:55:02Z | - |
dc.date.available | 2009-05-27T10:43:28Z | en |
dc.date.available | 2013-05-17T05:22:34Z | - |
dc.date.available | 2015-12-02T09:55:02Z | - |
dc.date.issued | 2003-03 | - |
dc.identifier.citation | Building and Environment, Vol. 38, no. 3, 2003, pp. 399-407 | en_US |
dc.identifier.issn | 03601323 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/1763 | - |
dc.description.abstract | The objective of this work is to investigate the use of artificial neural networks for the prediction of air pressure coefficients across the openings in a light weight single-sided naturally ventilated test room. Experimental values have been used for the training of the network. The outside ambient temperature, wind velocity and direction are monitored. The pressure coefficients at the top and bottom of the openings have been estimated from the recorded data of air pressures and velocities across the openings together with indoor air temperatures. The collected data together with the air heater load and a factor indicating whether the opening is in the windward (1) or leeward (0) direction are used as input to the neural network and the estimated pressure coefficients as the output. A general regression neural network was employed with two hidden layers. The training was performed with satisfactory accuracy and correlation coefficients of 0.9539 and 0.9325 have been obtained for the two coefficients, respectively. Satisfactory results have been obtained when unknown data were used as input to the network with correlation coefficients of 0.9575 and 0.9320, respectively. These are slightly better than the training values due to the variability of the data contained in the validation data set. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Building and Environment | en_US |
dc.rights | © Elsevier 2003 | en_US |
dc.subject | Artificial Neural Networks (ANN) | en_US |
dc.subject | Pressure coefficients | en_US |
dc.subject | Natural ventilation | en_US |
dc.title | Predicting the pressure coefficients in a naturally ventilated test room using artificial neural networks | en_US |
dc.type | Article | en_US |
dc.collaboration | Higher Technical Institute Cyprus | en_US |
dc.collaboration | Loughborough University | en_US |
dc.subject.category | Environmental Engineering | en_US |
dc.journals | Hybrid Open Access | en_US |
dc.country | Cyprus | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/S0360-1323(02)00032-X | en_US |
dc.dept.handle | 123456789/54 | en |
dc.relation.issue | 3 | en_US |
dc.relation.volume | 38 | en_US |
cut.common.academicyear | 2002-2003 | en_US |
dc.identifier.spage | 399 | en_US |
dc.identifier.epage | 407 | en_US |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Mechanical Engineering and Materials Science and Engineering | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4497-0602 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.journal.journalissn | 0360-1323 | - |
crisitem.journal.publisher | Elsevier | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
21
checked on Nov 8, 2023
WEB OF SCIENCETM
Citations
19
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
523
Last Week
0
0
Last month
1
1
checked on Feb 1, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.