Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1735
DC FieldValueLanguage
dc.contributor.authorLavrač, Nada-
dc.contributor.authorKononenko, Igor-
dc.contributor.authorKeravnou-Papailiou, Elpida-
dc.date.accessioned2013-02-14T11:46:24Zen
dc.date.accessioned2013-05-17T05:22:09Z-
dc.date.accessioned2015-12-02T09:53:57Z-
dc.date.available2013-02-14T11:46:24Zen
dc.date.available2013-05-17T05:22:09Z-
dc.date.available2015-12-02T09:53:57Z-
dc.date.issued1998-
dc.identifier.citationAI communications, 1998, vol. 11, no. 3-4, pp. 191-218en_US
dc.identifier.issn18758452-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1735-
dc.description.abstractExtensive amounts of knowledge and data stored in medical databases request the development of specialized tools for storing and accessing of data, data analysis, and effective use of stored knowledge and data. This paper focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension. The paper sketches the history of research that led to the development of current intelligent data analysis techniques, discusses the need for intelligent data analysis in medicine, and proposes a classification of intelligent data analysis methods. The main scope of the paper are machine learning and temporal abstraction methods and their application in medical diagnosis. A selection of methods and diagnostic domains is presented, and the performance and usefulness of approaches discussed. The paper concludes with the evaluation of selected intelligent data analysis methods and their applicability in medical diagnosisen_US
dc.language.isoenen_US
dc.relation.ispartofAI communicationsen_US
dc.rights© Iosen_US
dc.subjectComputer scienceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectData reductionen_US
dc.subjectDiagnosisen_US
dc.subjectDatabasesen_US
dc.titleIntelligent data analysis for medical diagnosis: using machine learning and temporal abstractionen_US
dc.typeArticleen_US
dc.affiliationUniversity of Cyprusen
dc.collaborationJožef Stefan Instituteen_US
dc.collaborationFaculty of Computer and Information Scienceen_US
dc.collaborationUniversity of Cyprusen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.countrySloveniaen_US
dc.subject.fieldEngineering and Technologyen_US
dc.dept.handle123456789/54en
dc.relation.issue3-4en_US
dc.relation.volume11en_US
cut.common.academicyear1997-1998en_US
dc.identifier.spage191en_US
dc.identifier.epage218en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1875-8452-
crisitem.journal.publisherIOS Press-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s)

382
Last Week
3
Last month
7
checked on Dec 23, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.