Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/1727
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chatzis, Sotirios P. | - |
dc.contributor.author | Demiris, Yiannis | - |
dc.contributor.other | Χατζής, Σωτήριος Π. | - |
dc.date.accessioned | 2013-02-19T15:48:40Z | en |
dc.date.accessioned | 2013-05-17T05:22:06Z | - |
dc.date.accessioned | 2015-12-02T09:53:38Z | - |
dc.date.available | 2013-02-19T15:48:40Z | en |
dc.date.available | 2013-05-17T05:22:06Z | - |
dc.date.available | 2015-12-02T09:53:38Z | - |
dc.date.issued | 2012-01 | - |
dc.identifier.citation | Pattern recognition, 2012, vol. 45, no. 1, pp. 570–577 | en_US |
dc.identifier.issn | 00313203 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/1727 | - |
dc.description.abstract | Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple, computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. This paper studies the formulation of a class of copula-based semiparametric models for sequential data modeling, characterized by nonparametric marginal distributions modeled by postulating suitable echo state networks, and parametric copula functions that help capture all the scale-free temporal dependence of the modeled processes. We provide a simple algorithm for the data-driven estimation of the marginal distribution and the copula parameters of our model under the maximum-likelihood framework. We exhibit the merits of our approach by considering a number of applications; as we show, our method offers a significant enhancement in the dynamical data modeling capabilities of ESNs, without significant compromises in the algorithm's computational efficiency. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Pattern Recognition | en_US |
dc.rights | © 2011 Elsevier Ltd. All rights reserved. | en_US |
dc.subject | Pattern Recognition | en_US |
dc.subject | Computer science | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Benchmarking | en_US |
dc.subject | Neural networks | en_US |
dc.title | The Copula Echo State Network | en_US |
dc.type | Article | en_US |
dc.collaboration | Imperial College London | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.journals | Open Access | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1016/j.patcog.2011.06.022 | en_US |
dc.dept.handle | 123456789/54 | en |
dc.relation.issue | 1 | en_US |
dc.relation.volume | 45 | en_US |
cut.common.academicyear | 2011-2012 | en_US |
dc.identifier.spage | 570 | en_US |
dc.identifier.epage | 577 | en_US |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4956-4013 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.journal.journalissn | 0031-3203 | - |
crisitem.journal.publisher | Elsevier | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
13
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
5
10
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
537
Last Week
0
0
Last month
5
5
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.