Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1698
DC FieldValueLanguage
dc.contributor.authorChallagulla, Krishna S.-
dc.contributor.authorKalamkarov, Alexander L.-
dc.contributor.authorGeorgiades, Tasos-
dc.contributor.otherΓεωργιάδης, Τάσος-
dc.date.accessioned2013-03-06T16:56:26Zen
dc.date.accessioned2013-05-17T05:22:19Z-
dc.date.accessioned2015-12-02T09:59:45Z-
dc.date.available2013-03-06T16:56:26Zen
dc.date.available2013-05-17T05:22:19Z-
dc.date.available2015-12-02T09:59:45Z-
dc.date.issued2006-03-17-
dc.identifier.citationComposites Part B: Engineering, 2006, vol. 37, no. 7-8, pp. 569-582en_US
dc.identifier.issn13598368-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1698-
dc.description.abstractAsymptotic homogenization models for prismatic smart composite structures are derived and the effective elastic, piezoelectric, and thermal expansion coefficients are obtained. The actuation coefficients characterize the intrinsic transducer nature of active smart materials that can be used to induce strains and stresses in a coordinated fashion. Examples of such actuators employed with smart composite material systems are derived from piezoelectric, magnetostrictive and some other materials. The constituents of the smart structures are assumed to exhibit orthotropic characteristics. The original problem for the regularly non-homogeneous smart composite structure reduces to a system of three simpler types of problem, called unit cell problems. It is precisely these unit cell problems that enable the determination of the aforementioned coefficients. These effective coefficients are universal in nature and can be used to study a wide variety of boundary value problems associated with a smart structure of a given geometry.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComposites Part B: Engineeringen_US
dc.rights© Elsevieren_US
dc.subjectBoundary value problemsen_US
dc.subjectMagnetostrictive transducersen_US
dc.subjectExpansion (Heat)en_US
dc.titleModeling of the thermopiezoelastic behavior of prismatic smart composite structures made of orthotropic materialsen_US
dc.typeArticleen_US
dc.affiliationDalhousie Universityen
dc.collaborationDalhousie Universityen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.compositesb.2006.03.008en_US
dc.dept.handle123456789/54en
dc.relation.issue7-8en_US
dc.relation.volume37en_US
cut.common.academicyear2006-2007en_US
dc.identifier.spage569en_US
dc.identifier.epage582en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8984-1011-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn1359-8368-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 20

479
Last Week
0
Last month
5
checked on Oct 4, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.