Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1675
DC FieldValueLanguage
dc.contributor.authorKoufakou, Anna-
dc.contributor.authorGeorgiopoulos, Michael N.-
dc.contributor.authorKasparis, Takis-
dc.contributor.otherΚασπαρής, Τάκης-
dc.date.accessioned2013-02-18T09:27:48Zen
dc.date.accessioned2013-05-17T05:22:11Z-
dc.date.accessioned2015-12-02T09:56:06Z-
dc.date.available2013-02-18T09:27:48Zen
dc.date.available2013-05-17T05:22:11Z-
dc.date.available2015-12-02T09:56:06Z-
dc.date.issued2001-11-
dc.identifier.citationNeural Networks, 2001, vol. 14, no. 9, pp. 1279–1291en_US
dc.identifier.issn08936080-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1675-
dc.description.abstractIn this paper we are examining the issue of overtraining in Fuzzy ARTMAP. Over-training in Fuzzy ARTMAP manifests itself in two different ways: (a) it degrades the generalization performance of Fuzzy ARTMAP as training progresses; and (b) it creates unnecessarily large Fuzzy ARTMAP neural network architectures. In this work, we are demonstrating that overtraining happens in Fuzzy ARTMAP and we propose an old remedy for its cure: cross-validation. In our experiments, we compare the performance of Fuzzy ARTMAP that is trained (i) until the completion of training, (ii) for one epoch, and (iii) until its performance on a validation set is maximized. The experiments were performed on artificial and real databases. The conclusion derived from those experiments is that cross-validation is a useful procedure in Fuzzy ARTMAP, because it produces smaller Fuzzy ARTMAP architectures with improved generalization performance. The trade-off is that cross-validation introduces additional computational complexity in the training phase of Fuzzy ARTMAP.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNeural Networksen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAccuracyen_US
dc.subjectNeural networksen_US
dc.subjectFuzzy logicen_US
dc.subjectComputer software--Validationen_US
dc.titleCross-validation in Fuzzy ARTMAP for large databasesen_US
dc.typeArticleen_US
dc.collaborationUniversity of Central Floridaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/S0893-6080(01)00090-9en_US
dc.dept.handle123456789/54en
dc.relation.issue9en_US
dc.relation.volume14en_US
cut.common.academicyear2001-2002en_US
dc.identifier.spage1279en_US
dc.identifier.epage1291en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0893-6080-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

28
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

26
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

391
Last Week
0
Last month
4
checked on Dec 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons